A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ceratitis capitata microbiota and its effect on environmental stress tolerance: making flies stronger. | LitMetric

Ceratitis capitata microbiota and its effect on environmental stress tolerance: making flies stronger.

Insect Sci

Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-CONICET, Tucumán, Argentina.

Published: February 2025

Ceratitis capitata (Wiedemann) is a cosmopolitan pest of economic importance. It is controlled by using the Sterile Insect Technique (SIT), which involves rearing and release of sterile males destined to mate with wild females, causing generation-to-generation suppression. Medflies are colonized by microorganisms, primarily the Enterobacteriaceae, with the genera Klebsiella and Enterobacter being the most common. Such microbiota contributes to host fitness. During the SIT, diet with antibiotics and irradiation for sterility of adults alter microbiota. We aimed to determine the role of Medfly microbiota on resistance to abiotic stress conditions, evaluating its function under: (i) starvation, (ii) elevated temperatures, and (iii) dry environments. These conditions simulate challenges Medfly may encounter after release, which differ from controlled rearing environments. We compared adult survival between symbiotic and aposymbiotic individuals, under starvation, two thermal regimes (25 and 30 °C) or two humidity regimes (20%-25% and 80%-90% R.H.). Aposymbiotic individuals were obtained after providing them with water containing a mixture of antibiotics and methylparaben. Treatment with antimicrobials effectively reduced the gut microbiota. While starvation had no significant effect on survival, a higher proportion of aposymbiotic individuals died earlier at 30 °C and under dry humidity, with the effect being more pronounced after 48 h. Our results suggest that microbiota plays a role in adaptation of Medfly under environmental stress. We report for the presence of a culturable yeast in the digestive tract of C. capitata, Zygosaccharomyces rouxii. Providing a probiotic adult diet with bacteria and Z. rouxii prior to release could improve SIT outcomes under adverse conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.70010DOI Listing

Publication Analysis

Top Keywords

aposymbiotic individuals
12
ceratitis capitata
8
environmental stress
8
microbiota
6
capitata microbiota
4
microbiota environmental
4
stress tolerance
4
tolerance making
4
making flies
4
flies stronger
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!