Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review).

Int J Oncol

Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China.

Published: April 2025

Cancer is the second leading cause of death among humans worldwide. Despite remarkable improvements in cancer therapies, drug resistance remains a significant challenge. The tumor microenvironment (TME) is intimately associated with therapeutic resistance. Tumor‑associated neutrophils (TANs) are a crucial component of the TME, which, along with other immune cells, play a role in tumorigenesis, development and metastasis. In the current review, the roles of TANs in the TME, as well as the mechanisms of neutrophil‑mediated resistance to cancer therapy, including immunotherapy, chemotherapy, radiotherapy and targeted therapy, were summarized. Furthermore, strategies for neutrophil therapy were discussed and TANs were explored as potential targets for cancer treatment. In conclusion, the need to explore the precise roles, recruitment pathways and mechanisms of action of TANs was highlighted for the purpose of developing therapies that precisely target TANs and reverse drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2025.5734DOI Listing

Publication Analysis

Top Keywords

tumor‑associated neutrophils
8
therapeutic resistance
8
drug resistance
8
cancer
5
resistance
5
tans
5
neutrophils critical
4
critical regulators
4
regulators cancer
4
cancer progression
4

Similar Publications

Inflammatory Signatures in VEXAS Syndrome, Myelodysplasia Cutis, and Sweet Syndrome.

JAMA Dermatol

March 2025

Service de Dermatologie et Allergologie, Faculté de Médecine, Sorbonne Université, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.

Importance: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease caused by UBA1 somatic variants in hematopoietic progenitor cells, mostly involving adult men. It is associated with inflammatory-related symptoms, frequently involving the skin and hematological disorders. Recently described myelodysplasia cutis (MDS-cutis) is a cutaneous manifestation of myelodysplasia in which clonal myelodysplastic cells infiltrate the skin.

View Article and Find Full Text PDF

Nanovaccines hold significant promise for the prevention and treatment of infectious diseases. However, the efficacy of many nanovaccines is often limited by inadequate stimulation of both innate and adaptive immune responses. Herein, we explore a rational vaccine strategy aimed at modulating innate cell microenvironments within lymph nodes (LNs) to enhance the generation of effective immune responses.

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.

View Article and Find Full Text PDF

Trapped in the NETs: Multiple Roles of Platelets in the Vascular Complications Associated with Neutrophil Extracellular Traps.

Cells

February 2025

Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, Hull HU6 7RX, UK.

Neutrophil extracellular traps (NETs) have received significant attention in recent years for their role in both the immune response and the vascular damage associated with inflammation. Platelets have been described as critical components of NETs since the initial description of this physio-pathological response of neutrophils. Platelets have been shown to play a dual role as responders and also as stimulators of NETs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!