α‑1 Antitrypsin is a potential target of inflammation and immunomodulation (Review).

Mol Med Rep

Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China.

Published: April 2025

α‑1 Antitrypsin (AAT) is an acute phase protein encoded by the gene. This multifunctional protein serves several roles, including anti‑inflammatory, antibacterial, antiapoptotic and immune regulatory functions. The primary role of AAT is to protect tissues and organs from protease‑induced damage due to its function as a serine protease inhibitor. AAT is associated with the development of lung inflammation, liver inflammation and immune‑mediated inflammatory diseases, which are influenced by environmental and genetic factors. For instance, AAT acts as an anti‑inflammatory protein to prevent and reverse type I diabetes. The present study briefly reviewed the molecular properties and mechanisms of AAT, as well as advances in the study of lung, liver and inflammatory diseases associated with AAT. The potential of AAT as a diagnostic and therapeutic target for inflammatory and immune‑mediated inflammatory diseases was reviewed. In addition, the damaging and protective effects of AAT, and its effects on organ function were discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881679PMC
http://dx.doi.org/10.3892/mmr.2025.13472DOI Listing

Publication Analysis

Top Keywords

inflammatory diseases
12
α‑1 antitrypsin
8
aat
8
immune‑mediated inflammatory
8
antitrypsin potential
4
potential target
4
target inflammation
4
inflammation immunomodulation
4
immunomodulation review
4
review α‑1
4

Similar Publications

Background: Critically ill children are at risk for subtherapeutic antibiotic concentrations. The frequency of target attainment and risk factors for subtherapeutic concentrations of cefepime in children have not been extensively studied.

Methods: We performed an observational study in critically ill children receiving a new prescription of standard dosing of cefepime for suspected sepsis (≥2 systemic inflammatory response syndrome criteria within 48 hours of cefepime start).

View Article and Find Full Text PDF

Psoriatic arthritis (PsA) is a chronic, inflammatory disease with heterogeneous clinical features. The pathogenesis of PsA involves a complex interplay of genetic, immunologic, and environmental factors, leading to the activation of the immune system and subsequent inflammation. Over the past decade, the understanding of the immune mechanisms underlying PsA has advanced significantly, particularly regarding the role of the interleukin-23/T helper 17 pathway in the disease process.

View Article and Find Full Text PDF

Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment.

View Article and Find Full Text PDF

Context: Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!