Dual-Functional Antimicrobial and Low-Fouling Cellulose Coatings.

ACS Appl Mater Interfaces

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia.

Published: February 2025

Surfaces contaminated with pathogens raise significant concerns due to their potential role in increasing the risk of disease transmission and subsequent infection. Existing surface coatings face several challenges that undermine their effectiveness and their broader applicability. These include the impact of surface topography on pathogen adhesion, which leads to biofouling, high production costs, scalability issues, as well as environmental concerns stemming from the utilization of toxic antifoulants and biocides. Here, we report dual-functional surface coatings with intrinsic antimicrobial and low fouling properties that are synergistic. The coatings are a porous reactive cellulose fibers network with dialdehyde functionality that demonstrates high antibacterial and antiviral performance against , methicillin-resistant , , and influenza A/H1N1 virus. Furthermore, we showed that the wettability of the coating significantly reduces the adhesion and colony formation of bacteria and their dead debris after inactivation by dialdehyde groups. The reactive cellulose fibers did not demonstrate any acute toxicity on L929 cells, which can meet the safe use of coating on the contact surfaces. The cellulose fibers coating derived from agricultural waste is cost-effective, eco-friendly, and highly scalable and is promising for use in packaging, household products, public facilities, and medical settings surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c21252DOI Listing

Publication Analysis

Top Keywords

cellulose fibers
12
surface coatings
8
reactive cellulose
8
dual-functional antimicrobial
4
antimicrobial low-fouling
4
cellulose
4
low-fouling cellulose
4
coatings
4
cellulose coatings
4
coatings surfaces
4

Similar Publications

Foam materials hold great promise in construction and packaging applications. However, the non-biodegradability and poor thermal stability of petroleum-based foams present serious environmental and safety concerns. It is crucial to develop sustainable, eco-friendly foam fabrication methods that balance environmental responsibility with high performance.

View Article and Find Full Text PDF

Investigating the Degradation of Historical Man-Made Cellulose-Derived Textiles via Accelerated Ageing.

Chempluschem

March 2025

University College London, The Bartlett School of Environment Energy and Resources, University College London, 14 Upper Woburn Place, WC1H 0NN, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cellulose-derived materials, like paper and cellulose acetate, are known to be vulnerable to degradation within museum collections. Studies have been conducted and degradation markers have been identified on these materials. However, the degradation of man-made cellulose-derived fibres in collections is not well understood.

View Article and Find Full Text PDF

Sustainable Biopolymer Colloids: Advances in Morphology for Enhanced Functionalities.

Langmuir

March 2025

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.

Biobased polymers such as cellulose, chitin/chitosan, starch, alginate, and lignin are making inroads as sustainable, environmentally safe and biodegradable alternatives to synthetic colloidal materials. This perspective summarizes recent developments in preparation techniques, identifies critical barriers, and proposes future directions for improving the performance and applicability of biopolymer colloidal structures. A major focus is the sustainable colloids morphology as a means of introducing functionality without chemical modification.

View Article and Find Full Text PDF

Decoding in-plane orientation in cellulose nanopapers hybridized with tailored polymeric nanoparticles.

Nanoscale

March 2025

KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden.

Biobased cellulose nanofibrils (CNFs) constitute important building blocks for biomimetic, nanostructured materials, and considerable potential exists in their hybridization with tailorable polymeric nanoparticles. CNFs naturally assemble into oriented, fibrillar structures in their cross-section. This work shows that polymeric nanoparticle additives have the potential to increase or decrease orientation of these cellulose structures, which allows the control of bulk mechanical properties.

View Article and Find Full Text PDF

The fire-retardant properties of bio-composites are generally enhanced through nano fillers incorporation at the cost of their mechanical properties. In this study, magnesium hydroxide (MH) nano filler was incorporated into flax/vinyl ester (VE) bio-composite to enhance its fire-retardancy and thermal stability simultaneously with mechanical properties. MH is chemically compatible with cellulosic fibers which played a role in improving the interfacial bonding and hence the mechanical properties in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!