Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cannabis sativa L. with a rich history of traditional medicinal use, has garnered significant attention in contemporary research for its potential therapeutic applications in various human diseases, including pain, inflammation, cancer, and osteoarthritis. However, the specific molecular targets and mechanisms underlying the synergistic effects of its diverse phytochemical constituents remain elusive. Understanding these mechanisms is crucial for developing targeted, effective cannabis-based therapies.
Methods: To investigate the molecular targets and pathways involved in the synergistic effects of cannabis compounds, we utilized DRIFT, a deep learning model that leverages attention-based neural networks to predict compound-target interactions. We considered both whole plant extracts and specific plant-based formulations. Predicted targets were then mapped to the Reactome pathway database to identify the biological processes affected. To facilitate the prediction of molecular targets and associated pathways for any user-specified cannabis formulation, we developed CANDI (Cannabis-derived compound Analysis and Network Discovery Interface), a web-based server. This platform offers a user-friendly interface for researchers and drug developers to explore the therapeutic potential of cannabis compounds.
Results: Our analysis using DRIFT and CANDI successfully identified numerous molecular targets of cannabis compounds, many of which are involved in pathways relevant to pain, inflammation, cancer, and other diseases. The CANDI server enables researchers to predict the molecular targets and affected pathways for any specific cannabis formulation, providing valuable insights for developing targeted therapies.
Conclusions: By combining computational approaches with knowledge of traditional cannabis use, we have developed the CANDI server, a tool that allows us to harness the therapeutic potential of cannabis compounds for the effective treatment of various disorders. By bridging traditional pharmaceutical development with cannabis-based medicine, we propose a novel approach for botanical-based treatment modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866588 | PMC |
http://dx.doi.org/10.1186/s42238-025-00268-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!