A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Irradiation-responsive PRDM10-DT modulates the angiogenic response in human NSCLC cells in an SP1-dependent manner via the miR-663a/TGF-β1 axis. | LitMetric

Irradiation-responsive PRDM10-DT modulates the angiogenic response in human NSCLC cells in an SP1-dependent manner via the miR-663a/TGF-β1 axis.

J Transl Med

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Published: February 2025

Background: Photon radiation has been shown to stimulate the secretion of radioresistant factors from tumor cells, ultimately promoting tumor angiogenesis and metastasis. On the other hand, heavy-ion radiotherapy has been demonstrated to control tumor angiogenesis and metastasis levels. The molecular mechanisms responsible for the different angiogenic responses to photon and heavy-ion irradiation are not fully understood. This study aims to explore the irradiation-responsive genes related to tumor angiogenesis and reveal the regulatory effect.

Methods: In order to clarify the potential regulatory mechanisms of tumor angiogenesis after X-ray or carbon ion (C-ion) irradiation, we performed RNA-sequencing (RNA-seq), as well as bioinformatics, public database analysis, Western blotting, immunohistochemistry, and immunofluorescence.

Results: In this study, we identified the long intergenic noncoding RNA PRDM10 divergent transcript (PRDM10-DT), which was responsive to X-rays but not carbon ions. Mechanistically, PRDM10-DT triggers tumor angiogenesis by upregulating the TGF-β1/VEGF signaling pathway through its competitive binding to miR-663a. Additionally, the transcription factor SP1 facilitated the transcription of PRDM10-DT by binding to its promoter region. It's notable that the DNA-binding activity of SP1 was enhanced by reactive oxygen species (ROS). The knockdown of either PRDM10-DT or SP1 effectively inhibited NSCLC angiogenesis and metastasis.

Conclusion: These results illustrate the proangiogenic function of the PRDM10-DT/miR-663a/TGF-β1 axis and reveal the regulatory role of ROS and SP1 in the upstream response to radiation, with differential ROS production mediating the differential angiogenesis levels after X-ray and C-ion irradiation. Our findings suggest the potential of PRDM10-DT as a nucleic acid biomarker after radiotherapy and that targeting this gene could be a therapeutic strategy to counteract angiogenesis in NSCLC radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866594PMC
http://dx.doi.org/10.1186/s12967-025-06273-0DOI Listing

Publication Analysis

Top Keywords

tumor angiogenesis
20
angiogenesis
8
angiogenesis metastasis
8
reveal regulatory
8
c-ion irradiation
8
tumor
6
prdm10-dt
5
irradiation-responsive prdm10-dt
4
prdm10-dt modulates
4
modulates angiogenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!