Cellular organelles undergo constant morphological changes and dynamic interactions that are fundamental to cell homeostasis, stress responses and disease progression. Despite their importance, quantifying organelle morphology and motility remains challenging due to their complex architectures, rapid movements and the technical limitations of existing analysis tools. Here we introduce Nellie, an automated and unbiased pipeline for segmentation, tracking and feature extraction of diverse intracellular structures. Nellie adapts to image metadata and employs hierarchical segmentation to resolve sub-organellar regions, while its radius-adaptive pattern matching enables precise motion tracking. Through a user-friendly Napari-based interface, Nellie enables comprehensive organelle analysis without coding expertise. We demonstrate Nellie's versatility by unmixing multiple organelles from single-channel data, quantifying mitochondrial responses to ionomycin via graph autoencoders and characterizing endoplasmic reticulum networks across cell types and time points. This tool addresses a critical need in cell biology by providing accessible, automated analysis of organelle dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41592-025-02612-7 | DOI Listing |
Nat Methods
February 2025
Calico Life Sciences LLC, South San Francisco, CA, USA.
Cellular organelles undergo constant morphological changes and dynamic interactions that are fundamental to cell homeostasis, stress responses and disease progression. Despite their importance, quantifying organelle morphology and motility remains challenging due to their complex architectures, rapid movements and the technical limitations of existing analysis tools. Here we introduce Nellie, an automated and unbiased pipeline for segmentation, tracking and feature extraction of diverse intracellular structures.
View Article and Find Full Text PDFNeurobiol Dis
March 2013
School of Psychology and Psychiatry, Faculty of Medicine Nursing & Health Sciences, Monash University, Clayton, VIC 3800, Australia.
We investigated two measures of neural integrity, T1-weighted volumetric measures and diffusion tensor imaging (DTI), and explored their combined potential to differentiate pre-diagnosis Huntington's disease (pre-HD) individuals from healthy controls. We applied quadratic discriminant analysis (QDA) to discriminate pre-HD individuals from controls and we utilised feature selection and dimension reduction to increase the robustness of the discrimination method. Thirty six symptomatic HD (symp-HD), 35 pre-HD, and 36 control individuals participated as part of the IMAGE-HD study and underwent T1-weighted MRI, and DTI using a Siemens 3 Tesla scanner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!