Diabetes, affecting over 10.5% of the global population, leads to severe health complications and economic burdens, highlighting the urgent need for effective therapeutic approaches. Current treatments are often insufficient, prompting the exploration of novel therapeutic agents and delivery mechanisms. This study addresses this gap by investigating the roles of L-arginine (identified as a target drug candidate through network pharmacology) in diabetes management, while also evaluating lipid nanocarriers synthesized from fenugreek seed oil for improved drug delivery. Our docking analyses revealed L-arginine's strong interactions with diabetes-target genes (CYP1A2, CYP2C19, and NFKB), with multiple hydrogen bonds and binding energies ranging from - 7.2 to - 8.9 kcal/mol. Encapsulated L-arginine lipid nanoparticles were characterized using UV-Visible spectroscopy, showing absorbance peaks at 415 nm for simple nanoparticles and 521 nm for L-arginine-loaded nanoparticles. Scanning electron microscopy confirmed an average nanoparticle size of 100.2 nm, and zeta potential analysis indicated a neutral surface charge (- 9.37 mV). Antioxidative activity showed 84.44% inhibition with an IC50 value of 40.5 µg/mL The nanoparticles inhibited albumin denaturation by 81.10% and alpha-amylase by 89.30%, surpassing metformin (78.43% at 1000 µg/mL). Hemolysis percentage was minimal at 10.54%. These findings demonstrate the potential of L-arginine as an anti-diabetic agent and highlight the efficacy of lipid nanocarriers as innovative drug delivery systems, providing a foundation for advancing therapeutic interventions against diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868517 | PMC |
http://dx.doi.org/10.1038/s41598-025-90675-z | DOI Listing |
J Immunol
January 2025
Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.
Current influenza vaccines are not effective in conferring protection against antigenic variants and pandemics. To improve cross-protection of influenza vaccination, we developed a 5xM2e messenger RNA (mRNA) vaccine encoding the tandem repeat conserved ectodomain (M2e) of ion channel protein M2 derived from human, swine, and avian influenza A viruses. The lipid nanoparticle (LNP)-encapsulated 5xM2e mRNA vaccine was immunogenic, eliciting high levels of M2e-specific IgG antibodies, IFN-γ+ T cells, T follicular helper cells, germinal center phenotypic B cells, and plasma cells.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by transporting functional molecules between donor cells and recipient cells, thereby regulating biological processes, such as immune responses. miR-451a, an immune regulatory microRNA, is highly abundant in circulating EVs; however, its precise physiological significance remains to be fully elucidated. Here, we demonstrate that miR-451a deficiency exacerbates delayed-type hypersensitivity (DTH) in mice.
View Article and Find Full Text PDFRSC Chem Biol
February 2025
Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
mRNA-based therapies have broad applications in various disease treatments and have been applied in protein replacement therapy, gene editing, and vaccine development. Numerous research studies have been carried out aiming to increase the stability of mRNA, improve its translational efficiency, and reduce its immunogenicity. However, given mRNA's large molecular size and strong electronegativity, the safety and efficient delivery of mRNA into the target cells remains the critical rate-limiting step in current mRNA drug development.
View Article and Find Full Text PDFRSC Adv
March 2025
Institute of Pharmaceutical Research, GLA University Mathura India.
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates.
View Article and Find Full Text PDFCurr Gene Ther
March 2025
Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari - 123401, India.
The advent of CRISPR/Cas gene-editing technology has revolutionized molecular biology, offering unprecedented precision and potential in treating genetic disorders, cancers, and other complex diseases. However, for CRISPR/Cas to be truly effective in clinical settings, one of the most significant challenges lies in the delivery of the CRISPR components, including guide RNA (gRNA) and Cas protein, into specific cells or tissues. Safe, targeted, and efficient delivery remains a critical bottleneck.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!