The N234 and N343-linked glycans of the SARS-CoV 2 spike protein are known to stabilize the up-conformation of its receptor-binding domains (RBDs), enabling human angiotensin enzyme 2 (hACE2) receptor binding. However, the effect of spike-hACE2 binding on these important glycans remains poorly understood, and these changes could have implications in the development of drugs that inhibit viral entry. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations of the hACE2-free and hACE2-bound spike protein are performed. Biophysical analyses were focused on the accessibility of three previously suggested druggable pockets underneath the three RBD subunits. A shielding effect by N234-linked glycans on the components of their adjacent pockets was observed. Although deshielding of central scaffold residues was observed in the hACE2-bound state, pocket A's accessibility was reduced due to an increase in NTD-RBD contacts, restricting entry into the pocket. For pocket B, changes in N234 and N343 expose the central scaffold residues in the bound state, increasing accessibility. In Pocket C, increased shielding due to N234 was found in the bound state, reducing accessibility. Despite these changes, the pockets remain accessible to ligands in both states and are still valid targets for drug development studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868416 | PMC |
http://dx.doi.org/10.1038/s41598-025-85153-5 | DOI Listing |
J Immunol
February 2025
Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
Several vaccines and immunization strategies, including inactivated vaccines, have proven effective in eliciting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing an opportunity to characterize the antibody response. In this study, we investigated the monoclonal antibody responses elicited by wild-type SARS-CoV-2 inactivated vaccination compared to those elicited by natural infection and mRNA vaccination. The analysis showed that antibodies encoded by biased germline genes were shared between SARS-CoV-2 vaccinated and naturally infected individuals.
View Article and Find Full Text PDFFront Immunol
March 2025
Abterra Biosciences, Inc., San Diego, CA, United States.
The rapid spread of SARS-CoV-2 and its continuing impact on human health has prompted the need for effective and rapid development of monoclonal antibody therapeutics. In this study, we investigate polyclonal antibodies in serum and B cells from the whole blood of three donors with SARS-CoV-2 immunity to find high-affinity anti-SARS-CoV-2 antibodies to escape variants. Serum IgG antibodies were selected by their affinity to the receptor-binding domain (RBD) and non-RBD sites on the spike protein of Omicron subvariant B.
View Article and Find Full Text PDFFront Immunol
March 2025
R&D Laboratory, Diagnosticum Zrt, Budapest, Hungary.
Antigen specific humoral immunity can be characterized by the analysis of serum antibodies. While serological assays for the measurement of specific antibody levels are available, these are not quantitative in the biochemical sense. Yet, understanding humoral immune responses quantitatively on the systemic level would need a universal, complete, quantitative, comparable measurement method of antigen specific serum antibodies of selected immunoglobulin classes.
View Article and Find Full Text PDFFront Immunol
March 2025
Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Objective: Both B-cell- and T-cell-mediated immunity are crucial for the effective clearance of viral infection, but little is known about the dynamic characteristics of SARS-CoV-2-specific B-cell and T-cell responses in people living with HIV (PLWH) after a full course of inactivated SARS-CoV-2 vaccination.
Methods: In this study, fifty people living with HIV (PLWH) and thirty healthy controls (HCs) were enrolled to assess B-cell and T-cell responses at the day before the vaccination (T0), two weeks after the first dose (T1), two months after the first dose (T2), the day of the third dose (T3), one month after the third dose (T4), three months after the third dose (T5) and 12 months (T6) after the third dose.
Results: SARS-CoV-2-specific B-cell and T-cell responses were induced in people living with HIV (PLWH), and these responses lasted at least one year after the third vaccine dose.
Front Immunol
March 2025
Department of Vaccine Research and Development, Applied Biomedical Science Institute, San Diego, CA, United States.
The SARS-CoV-2 pandemic, while subsiding, continues to plague the world as new variants emerge. Millions have died, and millions more battle with the debilitating symptoms of a clinical entity known as long Covid. The biggest challenge remains combating an ever-changing variant landscape that threatens immune evasion from vaccine and prior infection-generated immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!