Hepatocellular carcinoma (HCC) is a highly potent malignancy. The enzyme coactivator-associated arginine methyltransferase 1 (CARM1) is highly expressed in different types of cancer. However, the precise levels of expression, clinical significance, biological functions, and molecular mechanisms of CARM1 in HCC, particularly related to the downstream genes regulated by CARM1 through histone arginine methylation, remain unclear. In this study, we presented findings from the TCGA database and clinical samples, which collectively demonstrated the overexpression of CARM1 in HCC. Additionally, we found that the upregulation of CARM1 was mediated by PSMD14-induced deubiquitination. CARM1 promoted the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistic investigations further revealed that FERMT1 is a downstream gene of CARM1, and CARM1 activates the transcription of FERMT1 through the dimethylation of arginine 17 on histone 3 (H3R17me2). Additionally, administering SGC2085, a CARM1 inhibitor, effectively suppressed the malignant behaviors of HCC cells. To summarize, our findings provided strong evidence that CARM1 can serve as a key oncoprotein; thus, it holds promise as a therapeutic target for HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868421 | PMC |
http://dx.doi.org/10.1038/s41419-025-07416-3 | DOI Listing |
Elife
March 2025
Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China.
The first cell-fate decision is the process by which cells of an embryo take on distinct lineage identities for the first time, thus representing the beginning of developmental patterning. Here, we demonstrate that the molecular chaperone heat shock protein A2 (HSPA2), a member of the 70 kDa heat shock protein (HSP70) family, is asymmetrically expressed in the late 2-cell stage of mouse embryos. The knockdown of in one of the 2-cell blastomeres prevented its progeny predominantly towards the inner cell mass (ICM) fate.
View Article and Find Full Text PDFCell Commun Signal
March 2025
Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
Tubulin is crucial in several cellular processes, including intracellular organization, organelle transport, motility, and chromosome segregation. Intracellular tubulin concentration is tightly regulated by an autoregulation mechanism, in which excess free tubulin promotes tubulin mRNA degradation. However, the details of how changes in free tubulin levels initiate this autoregulation remain unclear.
View Article and Find Full Text PDFFront Genet
February 2025
Department of Infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Introduction: COVID-19 severity has been linked to immune factors, with excessive immune responses like cytokine storms contributing to mortality. However, the genetic basis of these immune responses is not well understood. This study aimed to explore the genetic connection between COVID-19 severity and blood cell traits, given their close relationship with immunity.
View Article and Find Full Text PDFCell Death Dis
February 2025
Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China.
Hepatocellular carcinoma (HCC) is a highly potent malignancy. The enzyme coactivator-associated arginine methyltransferase 1 (CARM1) is highly expressed in different types of cancer. However, the precise levels of expression, clinical significance, biological functions, and molecular mechanisms of CARM1 in HCC, particularly related to the downstream genes regulated by CARM1 through histone arginine methylation, remain unclear.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
The family of protein arginine methyltransferases (PRMTs) occupies an important position in biology, especially during the initiation and development of cancer. PRMT3 and CARM1(also known as PRMT4), being type I protein arginine methyltransferases, are key in controlling tumour progression by catalysing the mono-methylation and asymmetric di-methylation of both histone and non-histone substrates. This paper reviews the functions and potential therapeutic target value of PRMT3 and CARM1 in a variety of cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!