Ischemic stroke is the major type of stroke and one of the main causes of morbidity, mortality, and long-term disability worldwide. Microglia play a complex and crucial role in stroke. They are the primary immune cells in the brain and can rapidly respond to the pathological changes caused by stroke. They promote neuroprotection and repair after ischemic stroke through various mechanisms, such as activation and polarization, dynamic interactions with other cells (neurons, astrocytes, oligodendrocytes, vascular endothelial cells, etc.), and phagocytosis to clear dead cell debris. Among the multiple pathways through which microglia exert their neuroprotective effects, the secretion of extracellular vesicles is one of the most important. The focus of this review is to analyze the latest progress in research on ischemic stroke related to microglia-derived extracellular vesicles, discuss their mechanisms of action, and provide new strategies for improving stroke prognosis. To obtain relevant articles, we conducted a comprehensive search in Pubmed and Web of Science, with keywords related to ischemic stroke and microglia-derived extracellular vesicles or exosomes. A total of 59 articles were included in the review. Existing studies have shown that after a stroke occurs, microglia release extracellular vesicles containing proteins, nucleic acids, metabolites, etc. These vesicles target corresponding receptor cells and can slow down the development of stroke and improve stroke outcomes through various means, such as reducing neuronal apoptosis, inhibiting neuronal autophagy, suppressing neuronal ferroptosis, preventing neuronal pyroptosis, alleviating inflammatory responses, reducing glial scar formation, promoting myelin regeneration and repair, and facilitating blood-brain barrier repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2025.105949DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
20
ischemic stroke
20
stroke
12
stroke microglia-derived
8
microglia-derived extracellular
8
vesicles
6
extracellular
5
ischemic
5
progress mechanisms
4
mechanisms microglial
4

Similar Publications

Role of exosomes in regulating ferroptosis of tumor cells.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Medical Research Experimental Center, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China.

Exosomes are nanoscale extracellular vesicles widely present in various body fluids. They carry a variety of substances, including proteins, lipids, and nucleic acids, and play significant roles in the body by participating in immune regulation, intercellular signal transduction, and the transport of proteins and nucleic acids. Exosomes can regulate tumor development and drug resistance by modulating ferroptosis.

View Article and Find Full Text PDF

Studies based on extracellular vesicles (EVs) have been multiplying exponentially for almost two decades, since they were first identified as vectors of cell-cell communication. However, several of these studies display a lack of rigor in EVs characterization and isolation, without discriminating between the different EV populations, thus generating conflicting and unreproducible results. There is therefore a strong need for standardization and guidelines to conduct studies that are rigorous, transparent, reproducible and comply with certain nomenclatures concerning the type of EVs used.

View Article and Find Full Text PDF

Exosomal Dynamics: Bridging the Gap Between Cellular Senescence and Cancer Therapy.

Mech Ageing Dev

March 2025

Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India. Electronic address:

Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle.

View Article and Find Full Text PDF

U6 small nuclear RNA (U6 snRNA), a critical spliceosome component primarily found in the nucleus, plays a vital role in RNA splicing. Our previous study, using the simian immunodeficiency virus (SIV) macaque model, revealed an increase of U6 snRNA in plasma extracellular vesicles (EVs) in acute retroviral infection. Given the limited understanding of U6 snRNA dynamics across cells and EVs, particularly in SIV infection, this research explores U6 snRNA trafficking and its association with splicing proteins in the nucleus, cytoplasm, and EVs.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by transporting functional molecules between donor cells and recipient cells, thereby regulating biological processes, such as immune responses. miR-451a, an immune regulatory microRNA, is highly abundant in circulating EVs; however, its precise physiological significance remains to be fully elucidated. Here, we demonstrate that miR-451a deficiency exacerbates delayed-type hypersensitivity (DTH) in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!