Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seasonality is an important natural feature that drives cyclic environmental changes. Seaweed holobionts, inhabiting shallow waters such as rocky shores and mud flats, are subject to seasonal changes in particular, but little is known about the influence of seasonality on their microbial communities. In this study, we conducted a three-year time series, sampling at two-month intervals, to assess the seasonality of microbial epibiota in the seaweed holobiont Gracilaria vermiculophylla. Our results reveal pronounced seasonal shifts that are both taxonomic and functional, oscillating between late winter and early summer across consecutive years. While epibiota varied taxonomically between populations, they were functionally similar, indicating that seasonal variability drives functional changes, while spatial variability is more redundant. We also identified seasonal core microbiota that consistently (re)associated with the host at specific times, alongside a permanent core that is present year-round, independent of season or geography. These findings highlight the dynamic yet resilient nature of seaweed holobionts and demonstrate that their epibiota undergo predictable changes. Therewith, this research offers important insights into the temporal dynamics of seaweed-associated microbiota and demonstrates that the relationship between seaweed host and its epibiota is not static but naturally subject to an ongoing seasonal succession process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867712 | PMC |
http://dx.doi.org/10.1111/1462-2920.70062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!