Introduction: Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients.

Methods: Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome.

Results: Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases.

Conclusion: The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.

Introduction: Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients.

Methods: Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome.

Results: Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases.

Conclusion: The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867639PMC
http://dx.doi.org/10.1159/000543633DOI Listing

Publication Analysis

Top Keywords

pcna interactome
16
critical covid-19
16
interferon signaling
16
net formation
16
histone critical
16
pcna
14
cytosolic proliferating
12
proliferating cell
12
cell nuclear
12
nuclear antigen
12

Similar Publications

Introduction: Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients.

View Article and Find Full Text PDF

Current limitations in the treatment of hepatocellular carcinoma (HCC) include tumor recurrence, chemoresistance, and severe side effects, all of which call for novel cancer models that better represent the tumor microenvironment (TME). 3D organoids hold promise due to their increased relevance to the TME hallmarks. Herein, we aim to establish an HCC organoid model that mimics the HCC microenvironment and its metabolic interactome.

View Article and Find Full Text PDF

Unraveling the genetic basis of azoospermia: transcriptome profiling analyses in a Greek population.

F S Sci

February 2025

Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry, and Biotechnology, University of Thessaly, Volos, Greece.

Objective: To investigate whether idiopathic nonobstructive azoospermia (iNOA) has its own transcriptomic signature.

Design: Testicular tissue biopsies were retrieved, processed, and prepared for ribonucleic acid (RNA) extraction from 26 consented patients diagnosed with iNOA. Samples were grouped into four pools based on the presence of testicular spermatozoa: two replicate pools for "No presence" (Null-spz-1 and Null-spz-2 pools), one for "High presence" (High-spz pool), and one for "Rare presence" (Rare-spz pool).

View Article and Find Full Text PDF

The pseudokinase TRIB3 controls adipocyte lipid homeostasis and proliferation in vitro and in vivo.

Mol Metab

December 2023

Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3C584 CG Utrecht, The Netherlands. Electronic address:

Article Synopsis
  • The study examines the role of the pseudokinase Tribbles 3 (TRIB3) in energy metabolism by using Trib3 knockout mice to understand its effects on fat cells and overall metabolic health.
  • Results show that while Trib3 mice are fatter, their insulin sensitivity doesn't change, and their fat cells are smaller with increased proliferation markers, suggesting TRIB3 affects how these cells grow and store fat.
  • Overall, TRIB3 is implicated in various cellular processes through different signaling pathways, indicating it plays a crucial role in maintaining the health of fat tissue rather than just one specific function.
View Article and Find Full Text PDF

Bladder cancer (BC) is one of the most common cancers worldwide. Although the treatment and survival rate of BC are being improved, the risk factors and the underlying mechanisms causing BC are incompletely understood. Squalene monooxygenase (SQLE) has been associated with the occurrence and development of multiple cancers but whether it contributes to BC development is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!