Temporary anchorage devices (TADs) have evolved as useful anchorage providers for orthodontic tooth movements. To improve the stability of TADs, a number of modifications on their surface have been developed and investigated. This review comprehensively summarizes recent findings of clinically applied surface modifications of TADs and compared the biological improvement of these modifications. We focused on sandblasting, large-grit, acid etching (SLA), anodic oxidation (AO) and ultraviolet photofunctionalization (UVP). In vitro, in vivo and clinical studies of these surface modifications on TADs with clear explanations, low possibility of bias and published in English were included. Studies demonstrated that SLA, AO and UVP enhance cell attachment, proliferation, and differentiation in vitro. The biocompatibility and osteoconductivity of TAD surface are improved in vivo. However, in clinical studies, the changes are generally not so impressive. Furthermore, this review highlights the promising potential in combinations of different modifications. In addition, some other surface modifications, for instance, the biomimetic calcium phosphate coating, deserve to be proposed as future strategies. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/adbb44 | DOI Listing |
ACS Nano
March 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.
View Article and Find Full Text PDFForensic Sci Med Pathol
March 2025
School of Forensic Science, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India.
Gunshot residue (GSR) particles, generated during firearm discharge, disperse in the surrounding environment according to physical laws governing the motion of particles. This study analyzes GSR distribution from 9 × 19 mm ammunition along the trajectory with a fixed target. GSR particle count follows a bell-shaped distribution, influenced by velocity, temperature, and burn rate.
View Article and Find Full Text PDFJ Biomol NMR
March 2025
Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
Paramagnetic probes provide long-range distance information and report on minor conformations of biomacromolecules. However, it is important to realize that any probe can affect the system of interest. Here, we report on the effects of attaching a small nitroxide spin label [TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl] to xylotriose, a substrate of the enzyme xylanase from Bacillus circulans (BcX).
View Article and Find Full Text PDFAnal Bioanal Chem
March 2025
Department of Chemistry, The Women University, Multan, Pakistan.
Monoliths are versatile materials with diverse applications, and their performance can be enhanced through modifications, including the use of metal-organic frameworks (MOFs). Modified monoliths improve separation and analytical processes in various fields, with different modification methods offering distinct benefits and challenges. Directly adding MOF crystals to the polymerization mixture is straightforward and time effective, but it often results in poor dispersion and compositional heterogeneity, which compromises consistency and reproducibility, particularly in bioanalytical applications.
View Article and Find Full Text PDFLangmuir
March 2025
Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy.
The interaction between organic molecules and nanomaterials leads to complexation or the functionalization of later and modification of their properties, which are promising for electronics, terahertz technology, photonics, medical imaging, drug delivery, and other applications. Based on theoretical and experimental (THz, Raman, and fluorescence spectroscopy) studies, we analyzed the main spectroscopic characteristics of a weakly bound van der Waals complex of -stilbene (TS) molecule and hexagonal boron nitride (hBN). Raman scattering was demonstrated to be the most effective tool to confirm complex formation, exhibiting blue-shifted TS fingerprint lines in the TS + hBN Raman spectrum with respect to the spectra of pure TS or BN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!