Bone defects, resulting from trauma, tumor removal, infection, or congenital anomalies, are increasingly prevalent in clinical practice. Progress in bone tissue engineering has significantly advanced bone regeneration techniques. Chitosan-based nanoparticles (ChNPs) have emerged as a promising drug delivery system due to their inherent ability to enhance bone regeneration. These nanoparticles can extend the activity of osteogenic factors while ensuring their controlled release. Common synthesis methods for ChNPs include ionic gelation, complex coacervation, and polyelectrolyte complexation. ChNPs have demonstrated effectiveness in bone regeneration by delivering osteogenic agents, including DNA/RNA, proteins, and therapeutics. This review provides a comprehensive analysis of recent studies on ChNPs in bone regeneration, sourced from the PubMed database. It examines their synthesis techniques, advantages as drug delivery systems, incorporation into scaffold materials, and the challenges that remain in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/adbb45 | DOI Listing |
Eur J Dent
March 2025
Department of Oral and Maxillofacial Pathology, Faculty of Oral and Dental Surgery and Medicine, Zagazing University, Zagazing, Egypt.
Objectives: The ultimate goal of stem cell (SC) transplantation is the regeneration of salivary gland function by transplanted SCs differentiating into salivary gland cells. Therefore, this study aimed to evaluate the regenerative capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation in irradiated mice using the immunohistochemical markers Ki-67 and CD34.
Material And Methods: Four groups of male mice were included in the study.
Eur J Dent
March 2025
Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
Objective: Regenerative periodontal surgical approaches require scaffolds in a form that can fill narrow and irregular defects. Each scaffold must be specially designed to conform to the shape of the specific defect. The aim of this study was to fabricate nanohydroxyapatite chitosan-gelatin (nHA/KG) pastes with different composition percentages and to analyze the differences in physical, chemical, and biological characteristics in response to periodontal tissue regeneration .
View Article and Find Full Text PDFEur J Dent
March 2025
Department of Dental Material, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia.
Objective: Bone grafts derived from natural hydroxyapatite (HA) are increasingly being explored because they are more economical in terms of production costs compared with commercial HA. HA can be obtained from local cattle slaughter waste in Aceh, Indonesia, which has not been widely studied for its potential for dental applications. This study examines the synthesis and characterization of bovine HA (BHA) derived from Aceh cattle femur through calcination for applications in dentistry.
View Article and Find Full Text PDFBiomaterials
March 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China. Electronic address:
Due to the inherent limited regenerative capacity of tendons, rendering countermeasures for tendon injury remains challenging. The pathophysiology of tendon healing is complex and contains three sequential phases including inflammation, proliferation and remodeling. Aiming at the treatment of different stages of tendon injury, in our work, an injectable small intestinal submucosa hydrogel/sodium alginate microspheres (SIS/SA) composite co-encapsulating stromal cell derived factor-1α (SDF-1α) and bone morphogenetic protein-12 (BMP-12) was developed for effective tendon regeneration.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2025
Department of stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China. Electronic address:
Periodontitis is one of the major oral health issues worldwide, with significant impacts on oral health and patients's quality of life, but current therapies have not achieved optimal regeneration of periodontal tissue. This study developed scaffolds using natural tussah silk fibroin (TSF) cross-linked with regenerated silk fibroin (SF) nanofibers to improve mechanical properties and wet-state stability. Zinc oxide (ZnO) and polydopamine (PDA) composite nanoparticles were loaded into scaffold to impart its antibacterial and photothermal properties to construct a photo-responsive composite scaffold (ZnO/PDA/TSF-SF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!