To develop a binder system suitable for photocurable additive manufacturing of solid propellants, this study utilizes ethylene oxide-tetrahydrofuran copolyether (PET), a commonly employed binder in solid propellants, as foundational material. By modifying terminal groups, two photocurable binders are synthesized: allyl-terminated polyether (AUPET) and acrylate-terminated polyether (PUA). The exothermic behavior of photopolymerization and the mechanical properties of these binders are comprehensively investigated. PUA exhibits a significantly faster photopolymerization rate than AUPET, enabling rapid photocuring and molding. Both binders demonstrate photocuring capability in the presence of thiols. Mechanical property testing indicates PUA forms brittle films under self-curing conditions, with a tensile strength of 1.18 MPa and an elongation at break of 81.07%, whereas AUPET, upon curing in the presence of thiol, exhibits enhanced flexibility, showing a tensile strength of 0.37 MPa and an elongation at break of 587.49%. Additionally, incorporating a triazine ring structure significantly enhances the tensile strength of PUA and AUPET films, the presence of thiols improves their elongation at break.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202401050 | DOI Listing |
J Mol Model
March 2025
National Key Laboratory of Aerospace Chemical Power, Xiangyang, 441003, China.
Context: In order to estimate the mechanical behavior of the propellant under working pressures, the effect of pressure on the mechanical properties of hydroxyl-terminated polybutadiene (HTPB) propellants was studied by analyzing the uniaxial tensile strength and maximum strain master curves under the test conditions of - 20 ~ 70 °C, 0.5 mm/min ~ 500 mm/min with different pressures from 0 to 10 MPa. The results show that the master curves for tensile strength are obviously affected by the pressure in the range of 0.
View Article and Find Full Text PDFMacromol Rapid Commun
February 2025
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
To develop a binder system suitable for photocurable additive manufacturing of solid propellants, this study utilizes ethylene oxide-tetrahydrofuran copolyether (PET), a commonly employed binder in solid propellants, as foundational material. By modifying terminal groups, two photocurable binders are synthesized: allyl-terminated polyether (AUPET) and acrylate-terminated polyether (PUA). The exothermic behavior of photopolymerization and the mechanical properties of these binders are comprehensively investigated.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
The casting-curing process is a common technology for manufacturing the Nitrate Ester Plasticized Polyether (NEPE) propellants. The curing process involves a coupled thermal-chemical reaction of the adhesive systems of propellant, which influences the curing stage. Using GID 16 software, a propellant grain curing simulation model was conducted.
View Article and Find Full Text PDFMolecules
February 2025
Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
The detailed decomposition pathway of ammonium perchlorate (AP) is important for the design of solid propellants containing AP. In this paper, the possible decomposition reactions of AP upon nitrogen-doped graphene (N-Gr) as a catalyst are investigated via density functional theory. The reaction pathways of HClO and NH on the N-Gr surface are explored.
View Article and Find Full Text PDFMaterials (Basel)
February 2025
The Institute of Xi'an Aerospace Solid Propulsion Technology, Xi'an 710025, China.
Extrusion-based 3D printing holds great potential for manufacturing solid propellants. Among the various methods, screw- and plunger-based extrusion are the most frequently reported techniques for propellant 3D printing, each employing different extrusion mechanisms. This paper compares the flow characteristics of these two methods through a combination of simulations and experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!