Mucopolysaccharidosis type II (MPS II) is an X-linked lysosomal storage disorder caused by pathogenic variants in the gene encoding iduronate-2-sulfatase (IDS), which hydrolyzes sulfate groups in dermatan sulfate and heparan sulfate. The current treatment for MPS II includes enzyme replacement therapy and hematopoietic stem cell transplantation (HSCT). Both therapies have shown limited penetration through the blood-brain barrier. Anecdotal cases have been reported with the HSCT benefit to treat neurological problems in MPS II. Herein, we generated an MPS II mouse model using CRISPR/Cas9 to examine the effectiveness of CNS-directed, adeno-associated virus (AAV)2/9-mediated human IDS gene transfer in expressing sustained IDS and improving behavior performance in this model. The intracerebroventricular administration of AAV2/9-hIDS showed higher IDS activity in the central nervous system and better auditory function compared with those by intravenous administration. The results provide a strong proof of concept for the clinical translation of our approach to treating patients with MPS II and cognitive impairment.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2024.229DOI Listing

Publication Analysis

Top Keywords

central nervous
8
mucopolysaccharidosis type
8
mps
5
nervous system-targeted
4
system-targeted gene
4
gene therapy
4
therapy treatment
4
treatment neurocognitive
4
neurocognitive deficits
4
deficits mucopolysaccharidosis
4

Similar Publications

Decoding Microglial Polarization and Metabolic Reprogramming in Neurodegenerative Diseases: Implications for Disease Progression and Therapy.

Aging Dis

February 2025

Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.

As the resident macrophages of the brain, microglia are crucial immune cells specific to the central nervous system (CNS). They constantly surveil their surroundings and trigger immunological reactions, playing a key role in various neurodegenerative diseases (ND). As illnesses progress, microglia exhibit multiple phenotypes.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge about PNNs, their molecular composition and structure, as well as their functional roles and involvement in neurological diseases.

View Article and Find Full Text PDF

Bispecific antibodies (bAbs) that engage cerebrovascular targets, induce transport across the blood-brain barrier (BBB), and redistribute to secondary targets within the brain parenchyma have the potential to transform the diagnosis and treatment of a wide range of central nervous system disorders. Full understanding of the pharmacokinetics (PK) of these agents, including their potential for delivering cargo into brain parenchymal cells, is a key priority for the development of numerous potential therapeutic applications. To date, the brain PK of bAbs that target transferrin receptor (TfR-1) and CD98 heavy chain (CD98hc) has been characterized using techniques incapable of distinguishing between CNS clearance of intact protein from uptake and catabolism by brain parenchymal cells.

View Article and Find Full Text PDF

Background: Cancer-related cognitive impairment is a common complication of cancer and its treatment. The effectiveness of Traditional Chinese Medicine (TCM)-based interventions in improving subjective and objective cognitive function has not yet been investigated in previous network meta-analyses. This study aimed to evaluate the comparative effectiveness of nonpharmacological interventions including TCM-based interventions, and to rank the best option for improving cognitive function among adults with non-central nervous system cancer.

View Article and Find Full Text PDF

Aim: Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!