Cannabigerol is a bioactive compound derived from Cannabis sativa. It displays many promising pharmaceutical and nutraceutical properties. Its use and research are complicated by its thermally unstable solid form with low solubility and needle habit, preventing easy formulation into tablets or capsules. To overcome these problems, we conducted a crystallization screening with the aim to discover new crystal forms with enhanced properties. Though polymorph and solvate screenings did not yield new forms, the cocrystal screening was successful. Two cocrystals were discovered, one with piperazine and another with tetramethylpirazine, both in a 1:1 ratio. The latter can exist in three polymorphic forms. Both offer improvements in the melting point and crystal habit, and the cocrystal with tetramethylpirazine also shows a significant enhancement in dissolution rate. The new solid forms were analysed by a combination of methods, including X-ray powder diffraction, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis and intrinsic dissolution rate. Single-crystal X-ray diffraction data were used to solve the crystal structures, which were then compared with that of pure CBG. The crystal morphologies and surfaces were comprehensively analysed using the CSD-Particle suite, with various properties correlated against dissolution rates. While surface attachment energy and roughness (rugosity) did not show significant effects, the concentration of unsatisfied hydrogen-bond donors displayed a positive correlation. There were two parameters with a very strong correlation to dissolution rate: the propensity for interactions with water molecules, determined by the maximum range in the full interaction maps on the surface calculated for the water probe, and also the difference in the positive and negative electrostatic charges. These parameters proved highly predictive of aqueous dissolution, offering immense utility in pharmaceutical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878449PMC
http://dx.doi.org/10.1107/S2052252525001009DOI Listing

Publication Analysis

Top Keywords

dissolution rate
12
enhanced properties
8
crystal
5
dissolution
5
surface analysis
4
analysis cannabigerol
4
cannabigerol cocrystals
4
cocrystals linking
4
linking crystal
4
crystal structure
4

Similar Publications

Colorectal cancer is the second most common cause of death due to growing incidence. Andrographolide (AGD) induces apoptosis in colorectal cancer cells; however, oral administration of AGD is associated with hindered aqueous solubility (3.29 ± 0.

View Article and Find Full Text PDF

The present study aims to develop and characterize cannabidiol (CBD) solid dispersions using Vacuum Compression Molding (VCM) to enhance the drug solubility and release profile. Solid dispersions of CBD and polymers were processed using VCM at 130 °C for 4 min after a prior physical mixing. Five percent w/w of CBD was used with 5% w/w of poloxamer 188 and 90% w/w of polymeric carrier (Polyethylene Oxide, PEO-N80 or Hydroxypropyl cellulose, HPCEF).

View Article and Find Full Text PDF

A good and long-term stable electrical contact between the porous anode transport layer (PTL) and the adjacent catalyst layer is essential for efficient polymer electrolyte membrane water electrolyzers. This study describes the extensive comparison of seven titanium passivation-protecting coatings using short- and long-term measurements for at least 2000 h. The measurements are supported by before and after scanning electron microscope investigations of cross sections, energy-dispersive X-ray spectroscopy, X-ray diffractometry of the coatings, contact resistance measurements, and ex situ rapid aging tests.

View Article and Find Full Text PDF

Transition metal tellurides (TMTes) are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical specific capacity and impressive electronic conductivity. Nevertheless, TMTes suffer from persistent capacity degradation due to the large volume expansion, high ion-diffusion energy barriers, and the dissolution/shuttle of potassium polytellurides (KTe). Herein, a heterostructured CoTe composite equipped with a self-catalytic center (N-CoTe/LTTC) is developed, exploiting its low-tortuosity tunneling, chemical tunability, and self-catalytic properties to elevate cycling stability to new heights.

View Article and Find Full Text PDF

Fe-Mn based alloys are particular promising for the development of temporary bioabsorbable implants. They exhibit good performance in biological tests, improved mechanical properties and more adequate degradation rates than pure iron for the targeted application. In addition, this system possesses an excellent processability, making it particular suitable for designing thin structures and tailoring the chemistry by alloying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!