Objectives: Acute hypoxemic respiratory failure in immunocompromised patients remains the leading cause of admission to the ICU, with high case fatality. The response to the initial oxygenation strategy may be predictive of outcome. This study aims to assess the response to the evolutionary profiles of oxygenation strategy and the association with survival.

Design: Post hoc analysis of EFRAIM study with a nonparametric longitudinal clustering technique (longitudinal K-mean).

Setting And Patients: Multinational, observational prospective cohort study performed in critically ill immunocompromised patients admitted for an acute respiratory failure.

Interventions: None.

Measurements And Main Results: A total of 1547 patients who did not require invasive mechanical ventilation (iMV) at ICU admission were included. Change in ventilatory support was assessed and three clusters of change in oxygenation modality over time were identified. Cluster A: 12.3% iMV requirement and high survival rate, n = 717 patients (46.3%); cluster B: 32.9% need for iMV, 97% ICU mortality, n = 499 patients (32.3%); and cluster C: 37.5% need for iMV, 0.3% ICU mortality, n = 331 patients (21.4%). These clusters demonstrated a high discrimination. After adjustment for confounders, clusters B and C were independently associated with need for iMV (odds ratio [OR], 9.87; 95% CI, 7.26-13.50 and OR, 19.8; 95% CI, 13.7-29.1).

Conclusions: This study identified three distinct highly performing clusters of response to initial oxygenation strategy, which reliably predicted the need for iMV requirement and hospital mortality.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0000000000006600DOI Listing

Publication Analysis

Top Keywords

oxygenation strategy
12
critically ill
8
ill immunocompromised
8
acute hypoxemic
8
hypoxemic respiratory
8
respiratory failure
8
immunocompromised patients
8
response initial
8
initial oxygenation
8
imv requirement
8

Similar Publications

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.

View Article and Find Full Text PDF

Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.

View Article and Find Full Text PDF

Oxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids.

View Article and Find Full Text PDF

Exceptional Resistance to Chlorine-Induced Photocatalytic Poisoning via Vacuum UV Irradiation.

Environ Sci Technol

March 2025

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.

Catalyst deactivation poses a significant challenge in environmental remediation, especially for the photocatalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). In this study, a functional flower-like TiO@Mn/rGO (FTMG) catalyst coupled with a vacuum ultraviolet (VUV) lamp was used as a novel photocatalytic oxidation (VUV-PCO) system for chlorobenzene (CB) oxidation. In this system, more than 80% of CB was efficiently oxidized at a high w8 hly space velocity of 600,000 g h, which was a 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!