Unlabelled: Porcine deltacoronavirus (PDCoV) is a significant emerging pathogen that causes severe enteric disease in swine, and therefore significant economic losses in the pig farming industry. Here, we developed a novel double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) based on two monoclonal antibodies directed against the PDCoV spike protein. These two monoclonal antibodies were obtained through hybridoma fusion and screening, and they can specifically react with the PDCoV spike protein. The detection limits of the DAS-ELISA for the recombinant spike protein and viral titer were approximately 0.12 ng/mL and 1.96 × 10³ copies/μL, respectively. The DAS-ELISA did not cross-react with other swine enteric coronaviruses, including porcine epidemic diarrhea virus, transmissible gastroenteritis virus, or porcine rotavirus. A total of 145 rectal swab samples were collected and tested for the presence of PDCoV with the DAS-ELISA and reverse transcription-quantitative PCR (RT-qPCR). The coincidence rate between the DAS-ELISA and RT-qPCR was 91.03%, with a kappa value of 0.814, indicating that the DAS-ELISA is a reliable method for viral antigen detection in clinical samples. DAS-ELISA had a sensitivity of 92.85% and a specificity of 89.89%. The positive predictive value and negative predictive value of this method are 85.25% and 95.24%, respectively. Furthermore, the DAS-ELISA can also be used to detect the spike protein in PDCoV vaccines, making it a valuable tool for assessing the efficacy of PDCoV vaccines.
Importance: Since 2014, porcine deltacoronavirus (PDCoV) has spread widely across multiple countries and regions, causing significant economic losses to the global livestock industry. Currently, no commercially available vaccine exists for the prevention of PDCoV infection; therefore, accurate and effective diagnostic methods are crucial for its control and prevention. In this study, the PDCoV S protein expressed in Chinese Hamster Ovary (CHO) cells was used to immunize mice, and a novel double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was established based on two monoclonal antibodies. The DAS-ELISA had high sensitivity, good repeatability, strong specificity, and high consistency for detecting clinical samples and spike protein in PDCoV vaccines. Therefore, the DAS-ELISA established in this study may be a reliable and effective tool for detecting PDCoV infection and the efficacy of PDCoV vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/spectrum.02854-24 | DOI Listing |
J Immunol
February 2025
Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
Several vaccines and immunization strategies, including inactivated vaccines, have proven effective in eliciting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing an opportunity to characterize the antibody response. In this study, we investigated the monoclonal antibody responses elicited by wild-type SARS-CoV-2 inactivated vaccination compared to those elicited by natural infection and mRNA vaccination. The analysis showed that antibodies encoded by biased germline genes were shared between SARS-CoV-2 vaccinated and naturally infected individuals.
View Article and Find Full Text PDFFront Immunol
March 2025
Abterra Biosciences, Inc., San Diego, CA, United States.
The rapid spread of SARS-CoV-2 and its continuing impact on human health has prompted the need for effective and rapid development of monoclonal antibody therapeutics. In this study, we investigate polyclonal antibodies in serum and B cells from the whole blood of three donors with SARS-CoV-2 immunity to find high-affinity anti-SARS-CoV-2 antibodies to escape variants. Serum IgG antibodies were selected by their affinity to the receptor-binding domain (RBD) and non-RBD sites on the spike protein of Omicron subvariant B.
View Article and Find Full Text PDFFront Immunol
March 2025
R&D Laboratory, Diagnosticum Zrt, Budapest, Hungary.
Antigen specific humoral immunity can be characterized by the analysis of serum antibodies. While serological assays for the measurement of specific antibody levels are available, these are not quantitative in the biochemical sense. Yet, understanding humoral immune responses quantitatively on the systemic level would need a universal, complete, quantitative, comparable measurement method of antigen specific serum antibodies of selected immunoglobulin classes.
View Article and Find Full Text PDFFront Immunol
March 2025
Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
Objective: Both B-cell- and T-cell-mediated immunity are crucial for the effective clearance of viral infection, but little is known about the dynamic characteristics of SARS-CoV-2-specific B-cell and T-cell responses in people living with HIV (PLWH) after a full course of inactivated SARS-CoV-2 vaccination.
Methods: In this study, fifty people living with HIV (PLWH) and thirty healthy controls (HCs) were enrolled to assess B-cell and T-cell responses at the day before the vaccination (T0), two weeks after the first dose (T1), two months after the first dose (T2), the day of the third dose (T3), one month after the third dose (T4), three months after the third dose (T5) and 12 months (T6) after the third dose.
Results: SARS-CoV-2-specific B-cell and T-cell responses were induced in people living with HIV (PLWH), and these responses lasted at least one year after the third vaccine dose.
Front Immunol
March 2025
Department of Vaccine Research and Development, Applied Biomedical Science Institute, San Diego, CA, United States.
The SARS-CoV-2 pandemic, while subsiding, continues to plague the world as new variants emerge. Millions have died, and millions more battle with the debilitating symptoms of a clinical entity known as long Covid. The biggest challenge remains combating an ever-changing variant landscape that threatens immune evasion from vaccine and prior infection-generated immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!