Alginate is a major component of brown algae cell walls and can be degraded via β-elimination by alginate lyases. These enzymes are classified into polysaccharide lyases and oligo-alginate lyases (Oals), with Oals mainly represented by the PL15 and PL17 families. Unlike PL17 Oals, which are widely present in alginate-degrading microorganisms, PL15 enzymes are only identified in a limited number of microorganisms, and their biochemical characteristics remain poorly understood. In this research, a novel PL15 alginate lyase, VBAly15A, from the marine bacterium, sp. B1Z05, was identified and characterized. It belongs to a new PL15_3 subfamily and exhibits high activity toward polyM substrates. VBAly15A is thermostable in medium temperatures, tolerant to alkaline up to 11.0, and polyM-specific Oal, and it can first degrade alginate polymers into disaccharides and subsequently catalyze disaccharides into monomers via an exolytic mode. Site-directed mutagenesis showed that Arg, Tyr, and Arg in the active groove are essential for the stable binding of the substrate. In addition, the amino acid His in VBAly15A, previously suggested to act as a catalytic base, is not essential for catalysis, whereas Tyr, previously proposed to act as a catalytic acid, is required for enzyme activity. Structural bioinformatic and biochemical analyses revealed that His functions as a catalytic base, specifically abstracting protons from G-type substrates, while Tyr acts as both a catalytic acid and a base. This catalytic mechanism is likely conserved in PL15 family alginate lyases.IMPORTANCEAlginate, as a renewable resource for sustainability, has great application prospects. In addition to polysaccharide lyases, Oals are critical for the full degradation of alginate, a key prerequisite for biorefinery. So far, most identified and well-characterized Oals belong to the PL17 family. However, the catalytic mechanism of PL15 Oals is limited, and even the catalytic base and acid are not fully elucidated. The significance of this study lies in discovering and characterizing a novel Oal VBAly15A that divides into a new PL15 subfamily, PL15_3. Not only are key amino acid residues involved in enzyme activity identified, but residues acting as the catalytic base and acid are also demonstrated. The distance of the catalytic residues His and Tyr to the C5 proton of the sugar ring determines the substrate specificity. Therefore, this work provides new insights into the mechanism of substrate specificity in alginate lyases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/aem.02351-24 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Department of Biomedical Engineering, and Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708.
CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye.
Asymmetric organocatalysis by bifunctional acid- and base-type small organic molecules has emerged as a promising way to enhance stereoselective organic transformations since the beginning of this millennium. Takemoto's -amine/thiourea catalyst, an archetype in these endeavors, has encouraged many to design new multifunctional alternatives. However, the discovery of efficient catalysts in a library of thousands of candidates containing the desired functionalities in their structures remains a great challenge both synthetically and computationally.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2025
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China. Electronic address:
The application of plant growth-promoting rhizobacteria (PGPR) is a novel and effective strategy to ameliorate soil salinity and increase agricultural productivity. ACC deaminase (ACCD) in PGPR plays a key role in alleviating salt stress and promoting plant growth. This study aimed to investigate the potential of ACCD-producing strain BL-EF to mitigate salt stress in tomato plants.
View Article and Find Full Text PDFChemistry
March 2025
University of Hawaii at Manoa, Chemistry, 2545 McCarthy Mall, 96822, Honolulu, UNITED STATES OF AMERICA.
Hypergolic ionic liquids (HILs) represent a critical pool of reactive ionic liquids which ignite spontaneously in absence of oxygen when mixed with an oxidizer such as white fuming nitric acid (WFNA, HNO3) or hydrogen peroxide (H2O2). These HILs have emerged as greener alternative to the toxic hydrazine family of fuels for operations in space under anaerobic conditions. Here, we report on the unusual atmospheric ignition chemistry of the 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH])-H2O2 bipropellant while comparing with the parent hypergolic reaction by exploiting a chirped-pulse triggered droplet merging technique in an ultrasonic levitation apparatus under controlled environment.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
The homogeneous catalytic functionalization of methane is extremely challenging due to the relative nonpolarity and high C-H bond strength of this hydrocarbon. Here, using catalytic quantities (10 mol %) of CpMn(CO) or Cp*Re(CO), the conversion of methane and benzene C-H bonds to C-Be and H-Be bonds by CpBeBeCp has been achieved under photochemical conditions. Possible intermediates in the beryllation reactions─-bis(beryllyl)-manganese and -rhenium complexes─were also isolated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!