Natural peptides from animal venoms effectively modulate ion channel activity. While photoswitches regulate small compound pharmacology, their application to natural peptides rich in disulfide bridges and active on ion channels is novel due to larger pharmacophores. A pilot study integrating azobenzene photoswitches into charybdotoxin (ChTx), known for blocking potassium channels is initiated. Two click-chemistry-compatible azobenzene are synthesized differing in length and amide orientation (Az & Az). Az is grafted onto ChTx at various amino acid positions using L-azidohomoalanine mutation. ChTx monomers outperformed dimers, particularly with azobenzene at position 14, by exhibiting optimal photoswitching activity. In the cis configuration, Az altered ChTx's pharmacophore, reducing potassium channel blockage, while conversely, Az increased ChTx potency. This study pioneers photoswitch application to complex peptides, leveraging structure-activity relationships. Successful integration depends on precise azobenzene positioning and chemical grafting guided by SAR insights. This advancement underscores the adaptability of photoswitch technology to intricate peptide structures, offering new avenues for pharmacological modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202423278DOI Listing

Publication Analysis

Top Keywords

potassium channel
8
channel activity
8
natural peptides
8
photoisomerization azobenzene-extended
4
azobenzene-extended charybdotoxin
4
charybdotoxin optical
4
optical control
4
control k12
4
k12 potassium
4
activity natural
4

Similar Publications

Introduction: Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood.

View Article and Find Full Text PDF

Evaluating the predictive accuracy of ion-channel models using data from multiple experimental designs.

Philos Trans A Math Phys Eng Sci

March 2025

Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.

Mathematical models are increasingly being relied upon to provide quantitatively accurate predictions of cardiac electrophysiology. Many such models concern the behaviour of particular subcellular components (namely, ion channels) which, together, allow the propagation of electrical signals through heart-muscle tissue; that is, the firing of action potentials. In particular, I, a voltage-sensitive potassium ion-channel current, is of interest owing to the central pore of its primary protein having a propensity to blockage by various small molecules.

View Article and Find Full Text PDF

Optimizing experimental designs for model selection of ion channel drug-binding mechanisms.

Philos Trans A Math Phys Eng Sci

March 2025

Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.

The rapid delayed rectifier current carried by the human Ether-à-go-go-Related Gene (hERG) channel is susceptible to drug-induced reduction, which can lead to an increased risk of cardiac arrhythmia. Establishing the mechanism by which a specific drug compound binds to hERG can help reduce uncertainty when quantifying pro-arrhythmic risk. In this study, we introduce a methodology for optimizing experimental voltage protocols to produce data that enable different proposed models for the drug-binding mechanism to be distinguished.

View Article and Find Full Text PDF

Precisely localizing the spatial distribution of proteins within various brain cell types and subcellular compartments, such as the synapses, is essential for generating and testing hypotheses to elucidate their roles in brain function. While the fms-like tyrosine kinase-3 (Flt3) has been extensively studied in the context of blood cell development and leukemia pathogenesis, its role in the brain remains poorly understood. Previous efforts to address this issue were hindered by the low expression levels of Flt3 and the limited sensitivity of the standard immunolabeling method, which were insufficient to reliably detect Flt3 protein in brain tissue.

View Article and Find Full Text PDF

The potassium chloride co-transporter 2 (KCC2) is required for neuronal development, and KCC2 dysregulation is implicated in several neurodevelopmental disorders, including schizophrenia, autism, and epilepsy. A dozen mutations in the KCC2-encoding gene, SLC12A5, are associated with these disorders, but few are fully characterized. To this end, we examined KCC2 biogenesis in a HEK293 cell model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!