Background: Methamphetamine (Meth) is a potent psychoactive stimulant that triggers complex neurotoxicity characterized by autophagy-associated neuronal death. However, the potential mechanisms remain poorly understood. This study aimed to decipher the Meth-induced neuronal necroptosis involving mitochondrial defect-initiated excessive mitophagy caused by aberrant presenilin-associated rhomboid-like (PARL) cleavage of PTEN-induced kinase 1 (PINK1) and phosphoglycerate mutase family member 5 (PGAM5).

Methods And Results: With the transcriptome analysis, Meth exposure significantly affected autophagy, mitophagy, and necroptosis pathways; meanwhile, the proteomic analysis revealed a marked decline in the level of PARL, which led to an imbalance in intramembrane proteolysis of PINK1 and PGAM5. In behavioral tests, Meth administration elicited pronounced cognitive decline in mice, accompanied by decreased neuronal numbers, massive autophagosomes, and mitochondrial fragmentation, and these processes can be dramatically reversed by knockin of PARL and knockdown of PGAM5 in the mouse hippocampus, molecularly manifesting as decreased necrosome formation and phosphorylated mixed lineage kinase domain-like (p-MLKL) mitochondrial membrane translocation, and improved autophagic flux.

Conclusion: In summary, these findings collectively underscore the key roles of the PARL-PGAM5 axis in Meth-mediated neuronal necroptosis and that targeting this axis may provide promising therapeutic strategies for mitigating Meth-induced neurotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865887PMC
http://dx.doi.org/10.1111/cns.70293DOI Listing

Publication Analysis

Top Keywords

neuronal necroptosis
12
excessive mitophagy
8
neuronal
5
cleaving pink1
4
pink1 pgam5?
4
pgam5? involvement
4
parl
4
involvement parl
4
parl methamphetamine-induced
4
methamphetamine-induced excessive
4

Similar Publications

As a common and severe cerebrovascular disease, ischemic stroke casts a significant shadow over global health. Unfortunately, the mechanisms regulating neuronal death in the affected areas remain largely unclear. Here, we found that deletion of the deubiquitinating enzyme Otubain-2 (OTUB2) significantly alleviated ischemia-induced cerebral infarction and neurological deficits, accompanied by a reduction in neuronal loss, glial activation, and neuroinflammation.

View Article and Find Full Text PDF

Molecular mechanism of programmed cell death in drug-induced neuronal damage: A special focus on ketamine-induced neurotoxicity.

Toxicology

February 2025

West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China. Electronic address:

In recent years, the abuse of ketamine as a recreational drug has been growing, and has become one of the most widely abused drugs. Continuous using ketamine poses a risk of drug addiction and complications such as attention deficit disorder, memory loss and cognitive decline. Ketamine-induced neurotoxicity is thought to play a key role in the development of these neurological complications.

View Article and Find Full Text PDF

Background: Methamphetamine (Meth) is a potent psychoactive stimulant that triggers complex neurotoxicity characterized by autophagy-associated neuronal death. However, the potential mechanisms remain poorly understood. This study aimed to decipher the Meth-induced neuronal necroptosis involving mitochondrial defect-initiated excessive mitophagy caused by aberrant presenilin-associated rhomboid-like (PARL) cleavage of PTEN-induced kinase 1 (PINK1) and phosphoglycerate mutase family member 5 (PGAM5).

View Article and Find Full Text PDF

While recent work has identified roles for immune mediators in regulating neural activity, how innate immune signaling within neurons influences neurotransmission remains poorly understood. Emerging evidence suggests that the modulation of neurotransmission may serve important roles in host protection during infection of the central nervous system. Here, we showed that receptor-interacting protein kinase-3 (RIPK3) preserved neuronal survival during flavivirus infection through the suppression of excitatory neurotransmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!