mRNA is an important molecule in vaccine development and treatment of genetic disorders. Its capability to hybridize with DNA oligonucleotides in a programmable manner facilitates the formation of RNA-DNA origami structures, which can possess a well-defined morphology and serve as rigid supports for mRNA delivery. However, to date, comprehensive studies on the requirements for efficient folding of mRNA into distinct mRNA-DNA structures while preserving its translation functionality remain elusive. Here, the impact of design parameters on the folding of protein-encoding mRNA into mRNA-DNA origami structures is systematically investigated and the importance of the availability of ribosome-binding sequences on the translation efficiency is demonstrated. Furthermore, these hybrid structures are encapsulated inside virus capsids resulting in protecting them against nuclease degradation and also in enhancement of their cellular uptake. This multicomponent system therefore showcases a modular and versatile nanocarrier. The work provides valuable insight into the design of mRNA-DNA origami structures contributing to the development of mRNA-based gene delivery platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202417642DOI Listing

Publication Analysis

Top Keywords

mrna-dna origami
12
origami structures
12
structures
5
folding mrna-dna
4
origami
4
origami controlled
4
controlled translation
4
translation viral
4
viral vector
4
vector packaging
4

Similar Publications

mRNA is an important molecule in vaccine development and treatment of genetic disorders. Its capability to hybridize with DNA oligonucleotides in a programmable manner facilitates the formation of RNA-DNA origami structures, which can possess a well-defined morphology and serve as rigid supports for mRNA delivery. However, to date, comprehensive studies on the requirements for efficient folding of mRNA into distinct mRNA-DNA structures while preserving its translation functionality remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!