Radiofrequency (RF) catheter ablation treats cardiac diseases by inducing thermal lesion of cardiac tissues through radiofrequency energy operating at around 500 kHz. The electromagnetic wavelength is significantly longer than the size of the radiofrequency active electrode, the tissue is heated through resistive heating. During thermal ablation, the coupled thermo-mechanical property of cardiac tissue influencing the contact area between the electrode and tissue plays a crucial role in the formation of thermal lesions, yet the literature often overlooks the effect of thermal deformation. This paper proposes a thermo-hyperelastic constitutive model for myocardium that models thermal contraction and expansion during ablation. Furthermore, a finite element model was established to investigate the effect of the electro-thermo-mechanical coupling property of myocardium on lesion formation under different contact forces. To ensure convergence, we solved the fully coupled electro-thermo-mechanical finite element model using the segregated step method. The computational results demonstrate that thermal deformation, which causes an expansion in the tissue-electrode contact area, increases lesion width and volume, while its influence on lesion depth is negligible. Specifically, after a 30-s ablation under contact forces of 0.1, 0.15, and 0.2 N, the lesion volume increased from 4.53, 7.66, and 10.62 mm (without thermo-mechanical coupling) to 5.36, 8.33, and 13.34 mm (with thermo-mechanical coupling), respectively. Similarly, the lesion width increased from 2.68, 3.12, and 3.44 mm to 2.78, 3.22, and 3.62 mm. Moreover, both thermal deformation and contact force exert a minimal effect on lesion formation time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09544119251321131 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
Jiangxi Normal University, Department College of Chemistry and Materials, CHINA.
Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN- anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)2].
View Article and Find Full Text PDFNatl Sci Rev
April 2025
Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
Gallium-based liquid metals, when combined with magnetic agents, emerge as intelligent materials with potential applications in soft robotics within biomedical engineering. However, concerns have arisen from the residual presence of liquid metal, raising long-term biological risks. Herein, we propose a containment method that involves the rolling of magnetic liquid-metal droplets in lyophilized powders, resulting in the formation of intact hydrogel coatings upon hydration.
View Article and Find Full Text PDFJ Pharm Bioallied Sci
December 2024
Professor, Department of OMFS, KIMS Dental College, Amalapuram, Andhra Pradesh, India.
Introduction: Bilateral sagittal split osteotomy (BSSO) is the most performed orthognathic surgery for mandibular dentofacial abnormalities. The most common complication is the neurosensory deficit. The current study was aimed at determining the incidence of inferior alveolar nerve neurosensory deficit (NSD) following BSSO surgery, and in assessing intra-operative nerve encounter status and possible relation to NSD.
View Article and Find Full Text PDFACS Omega
March 2025
Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan 320317, Republic of China.
As a nonthermal approach, microwave processing significantly enhances interface reactivity and preserves microchannel integrity during the bonding of poly(methyl methacrylate) (PMMA) microfluidic devices. By activating and aligning polymer chains at lower temperatures, this method promotes rapid bonding and improved interfacial adhesion, maintaining the precision of delicate microstructures essential for device functionality. Unlike thermal wafer bonding, which relies on elevated temperatures that may risk deforming delicate microstructures, the nonthermal effect of microwaves facilitates the activation and alignment of polymer chains at lower temperatures, enhancing interfacial adhesion through improved molecular interactions.
View Article and Find Full Text PDFSci Rep
March 2025
School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing, 210014, China.
Grain size refinement stagnates at the balance between refinement by dislocation accumulation and coarsening by thermal recovery for generally equiaxed structures upon increase of plastic strain. It is curious if this stagnation occurs also for laminated structures. In this paper, three kinds of metal with nanolamellar (NL) structure were successfully prepared by the method of equal channel angular processing (ECAP) followed by liquid nitrogen rolling (LNR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!