Bone regeneration is one of the most effective methods for treating bone defects. In this work, tricarboxylic cellulose/sodium alginate loaded with hydroxyapatite (HA) and/or graphene oxide (GO) was coagulated by calcium ions to create beads as scaffolds. In the first, cellulose was oxidized to water-soluble tricarboxylic cellulose (TCC) by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), periodate, and chlorite oxidation. HA was extracted from eggshells via microwave treatment, and GO was synthesized using the Hummer method. The structural behavior of the formed beads was meticulously investigated through various characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The SEM images confirmed the formation of particles of micrometric size without any specific morphology. Incorporating GO or HA does not affect the morphologies of the materials on the micrometric scale. The cytocompatibility of different bead preparations was studied on murine mesenchymal stem cells. Moreover, the swellability in water and biodegradability by cellulase enzyme of prepared beads were studied. The results show that the prepared beads may be promising for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863958 | PMC |
http://dx.doi.org/10.1186/s13065-025-01408-2 | DOI Listing |
Bone Joint Res
March 2025
Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.
View Article and Find Full Text PDFRegen Biomater
January 2025
Department of Orthopedics, National Children's Medical Center & Children's Hospital of Fudan University, Shanghai 201102, P. R. China.
The growth plate is crucial for skeletal growth in children, but research on repairing growth plate damage and restoring growth is limited. Here, a high-toughness adaptive dual-crosslinked hydrogel is designed to mimic the growth plate's structure, supporting regeneration and bone growth. Composed of aldehyde-modified bacterial cellulose (DBNC), methacrylated gelatin (GelMA) and sodium alginate (Alg), the hydrogel is engineered through ionic bonding and Schiff base reactions, creating a macroporous structure.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China.
Nonunion fractures present a significant clinical challenge because of their complex microenvironment, which includes poor vascularization, insufficient osteogenesis, infection, and separation of fracture ends. The current clinical treatments have certain limitations. Inspired by this phenomenon, sandcastle worms secrete adhesive proteins that bind sand grains, shell fragments, and mineral particles, thereby constructing their "castles.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2025
Wuxi People's Hospital, Wuxi, Jiangsu, China.
Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants.
View Article and Find Full Text PDFInt J Nanomedicine
March 2025
Department of Periodontics and Mucosa, The second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, People's Republic of China.
Introduction: Periodontitis is the most common non-communicable disease in humans. The main challenge in the treatment of periodontitis is to effectively control periodontal inflammation and promote tissue repair. Human umbilical cord mesenchymal stem cells-derived exosomes (hucMSCs-exo) have been reported to modulate inflammatory responses and promote tissue repairment mainly through miRNAs in several diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!