The frequency of engineering fires is increasing, and the study of the residual mechanical properties of steel fiber-reinforced rubber concrete (SFRRC) after high temperatures is essential for evaluating its load-bearing capacity after fire. This study examines the mechanical properties of SFRRC after being subjected to elevated temperatures, considering the impacts of varying steel fiber amounts (V =0.6, 1.2%) and different rubber substitution ratio (r=0, 5, 10, 15%) on the specimens after different temperatures (20, 200, 400, 600, 800 °C). All specimens were tested in cubic and axial compression, split tensile and four-point flexure tests. The findings indicated that steel fibers and rubber enhance the durability and safety of concrete by reducing the risk of cracking at high temperatures and inhibiting crack extension. When 1.2% steel fibers and 5% rubber particles were added, the mechanical properties of specimens after exposure to high temperatures were improved compared to normal concrete, with cube compressive strength, uniaxial compressive strength, splitting tensile strength, and flexural strength increased by 0.23-8.48%, 1.13-4.16%, 22.92-44.23%, and 3.03-19.81%, respectively. In this study, the mechanism of temperature action on SFRRC was analyzed. On the basis of experimental data, prediction models for SFRRC after high temperatures were proposed. The models were compared with experimental data and previous research results. The results of the study will help to promote the formulation of specifications in related fields and promote the practical application of SFRRC as a novel material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865442 | PMC |
http://dx.doi.org/10.1038/s41598-024-80458-3 | DOI Listing |
Adv Mater
March 2025
Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
Migration of implanted self-expandable metallic stent (SEMS) in the malignant or benign esophageal stricture is a common complication but not yet resolved. Herein, this research develops a hydrogel-impregnated robust interlocking nano connector (HiRINC) to ensure adhesion and reduce the mechanical mismatch between SEMSs and esophageal tissues. Featuring a network-like porous layer, HiRINC significantly enhances adhesion and energy dissipation during esophageal peristalsis by utilizing mechanical interlocking and increasing hydrogen bonding sites, thereby securing SEMS to tissues.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China.
Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Advanced Laser Technology Laboratory of Anhui Province, College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China.
The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared-radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure is a combination of a radar-absorbing layer (RAL) and a low-infrared-emission layer (IRSL), with an overall thickness of about 1.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag per GC base pair induces a one-base shift of one strand relative to the other. This results in a ds nucleic acid-Ag conjugate consisting of alternating CC and GG base pairs coordinated by silver ions. The proposed organization of the conjugate is supported by the results of our Quantum Mechanical (QM) and Molecular Mechanics (MMs) calculations.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
Stretchability and flexibility are essential characteristics for high-performance electromagnetic interference (EMI) shielding materials in wearable and smart devices. However, achieving these mechanical properties while also maintaining high EMI shielding effectiveness (SE) for shielding materials remains a significant challenge. Here, a stretchable patterned carbon nanotube (CNT) array composite film, reinforced with two-dimensional (2D) nanomaterials (TiCT and graphene), is fabricated using a straightforward scraping method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!