Controlling the carbon flux is important for efficient production of value-added chemicals using microbial cell factories. In this study, we developed a system to control the carbon flux in Corynebacterium glutamicum via targeted protein degradation. We employed an SspB-dependent protein degradation system targeting the SsrA tag and applied it to control the carbon flux. First, we selected a degradation tag efficiently recognized by the ClpXP protease in C. glutamicum using green fluorescent protein (GFP) as a model protein. Among the four tags examined in this study, a mutant SsrA tag with DAS residues from Escherichia coli resulted in specific GFP degradation only when the adaptor SspB was induced in C. glutamicum. Next, we applied this system to control the carbon flux. We selected phosphoglucoisomerase (PGI) encoded by pgi, as a target protein, to control the carbon flux between glycolysis and pentose phosphate pathway (PPP) and 1,5-diaminopentane as a model product to evaluate this control system. Compared with the parental strain, the specific growth rate of the engineered strain decreased by 36 %, whereas the yield and production rate of 1,5-diaminopentane increased by 193 % and 70 %, respectively. This is the first report on the application of a protein degradation system to control carbon flux in C. glutamicum. The system developed in this study can be widely applied for designing C. glutamicum cell factories for efficient production of varied value-added chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2025.02.002 | DOI Listing |
Environ Res
March 2025
Enviromental Chemistry Laboratory, Resource Management and Environmental Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Seasonal fluctuations can influence many biotic and abiotic parameters in wetland environments. Present research on wetlands do not serve as a comprehensive model for understanding these seasonal influences, especially in Northeast India, where wetland ecosystems remain understudied. That being, our study investigated the seasonal, spatial, depth-wise variations of enzyme activity (xylanase, invertase, and cellulase), microbial community, and heavy metal concentrations [chromium (Cr), cadmium (Cd), lead (Pb), and iron (Fe)] in the sediments of Deepor Beel.
View Article and Find Full Text PDFWaste Manag
March 2025
School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:
The safe disposal and utilization of bulk solid waste (SW) are critical challenges. Manufactured soil, a soil-like material composed of SW, offers a novel solution for resource recycling. However, the mechanisms underlying SW-based manufactured soil fertility development remain unclear.
View Article and Find Full Text PDFLangmuir
March 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China.
The transportation and transformation of biogenic isoprene are vital for the organic carbon cycle in the troposphere. As a typical mineral with high oxidation potential, Fe-substituted cryptomelane oxidizes the surface monolayer of isoprene into formic and acetic acids, and simultaneously, the Mn ions in the structure are reduced to Mn and Mn. The flow of HO in isoprene decreases the adsorption and oxidation of isoprene significantly, even at low relative humidity (10%).
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Northwest Institute for Nonferrous Metal Research, Xi'an, Shannxi 710016, China.
Porous KTi(PO) nanoparticles are synthesized via a solvothermal method and subsequently modified with nitrogen-doped carbon layers by using polydopamine as the carbon source. The resultant KTi(PO)@N-doped carbon composite (KTP@NC) exhibits a preserved porous structure with abundant pores, facilitating ion diffusion and electrolyte infiltration. Various characterizations, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy, reveal the successful formation of an interconnected nitrogen-doped carbon network.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!