Predicting Microvascular Invasion and Early Recurrence in Hepatocellular Carcinoma Using DeepLab V3+ Segmentation of Multiregional MR Habitat Images.

Acad Radiol

Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., Y.P., W.H., F.P., H.W., C.Y., R.Y., Y.L.); Department of Radiology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China (Y.L.); Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China (Y.L.). Electronic address:

Published: February 2025

Rationale And Objectives: Accurate identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is crucial for treatment and prognosis. Single-modality and feature fusion models using manual segmentation fail to provide insights into MVI. This study aims to develop a DeepLab V3+ model for automated segmentation of HCC magnetic resonance (MR) images and a decision fusion model to predict MVI and early recurrence (ER).

Materials And Methods: This retrospective study included 209 HCC patients (146 in the training and 63 in the test cohorts). The performance of DeepLab V3+ for HCC MR image segmentation was evaluated using Dice Loss and F1 score. Intraclass correlation coefficients (ICCs) assessed feature extraction reliability. Spearman's correlation analyzed the relationship between tumor volumes from automated and manual segmentation, with agreement evaluated using Bland-Altman plots. Model performance was assessed using the area under the receiver operating characteristic curve (ROC AUC), calibration curves, and decision curve analysis. A nomogram predicted ER of HCC after surgery, with Kaplan-Meier analysis for 2-year recurrence-free survival (RFS).

Results: The DeepLab V3+ model demonstrated high segmentation accuracy, with strong agreement in feature extraction (ICC: 0.802-0.999). The decision fusion model achieved AUCs of 0.968 and 0.878 for MVI prediction, and the nomogram for predicting ER yielded AUCs of 0.782 and 0.690 in the training and test cohorts, respectively, with significant RFS differences between the risk groups.

Conclusion: The DeepLab V3+ model accurately segmented HCC. The decision fusion model significantly improved MVI prediction, and the nomogram offered valuable insights into recurrence risk for clinical decision-making.

Availability Of Data And Materials: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2025.02.006DOI Listing

Publication Analysis

Top Keywords

deeplab v3+
20
v3+ model
12
decision fusion
12
fusion model
12
microvascular invasion
8
early recurrence
8
hepatocellular carcinoma
8
manual segmentation
8
training test
8
test cohorts
8

Similar Publications

Quantifying aortic valve calcification is critical for assessing the severity of aortic stenosis, predicting cardiovascular risk, and guiding treatment decisions. This study evaluated the feasibility of a deep learning-based automatic quantification of aortic valve calcification using contrast-enhanced coronary CT angiography and compared the results with manual calcium scoring. A retrospective analysis of 177 patients undergoing aortic stenosis evaluation was conducted, divided into a development set (n = 97) and an internal validation set (n = 80).

View Article and Find Full Text PDF

Predicting Microvascular Invasion and Early Recurrence in Hepatocellular Carcinoma Using DeepLab V3+ Segmentation of Multiregional MR Habitat Images.

Acad Radiol

February 2025

Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., Y.P., W.H., F.P., H.W., C.Y., R.Y., Y.L.); Department of Radiology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China (Y.L.); Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China (Y.L.). Electronic address:

Rationale And Objectives: Accurate identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is crucial for treatment and prognosis. Single-modality and feature fusion models using manual segmentation fail to provide insights into MVI. This study aims to develop a DeepLab V3+ model for automated segmentation of HCC magnetic resonance (MR) images and a decision fusion model to predict MVI and early recurrence (ER).

View Article and Find Full Text PDF

Total Kidney Volume (TKV) is widely used globally to predict the progressive loss of renal function in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Typically, TKV is calculated using Computed Tomography (CT) images by manually locating, delineating, and segmenting the ADPKD kidneys. However, manual localization and segmentation are tedious, time-consuming tasks and are prone to human error.

View Article and Find Full Text PDF

Identification and diagnosis of tobacco diseases are prerequisites for the scientific prevention and control of these ailments. To address the limitations of traditional methods, such as weak generalization and sensitivity to noise in segmenting tobacco leaf lesions, this study focused on four tobacco diseases: angular leaf spot, brown spot, wildfire disease, and frog eye disease. Building upon the Unet architecture, we developed the Multi-scale Residual Dilated Segmentation Model (MD-Unet) by enhancing the feature extraction module and integrating attention mechanisms.

View Article and Find Full Text PDF

Background/objectives: Cystoscopy is necessary for diagnosing bladder cancer, but it has limitations in identifying ambiguous lesions, such as carcinoma in situ (CIS), which leads to a high recurrence rate of bladder cancer. With the significant advancements in deep learning in the medical field, several studies have explored its application in cystoscopy. This study aimed to utilize the VGG19 and Deeplab v3+ deep learning models to classify and segment cystoscope images, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!