Shengmai-Yin resists myocardial ischemia reperfusion injury by inhibiting K27 ubiquitination of absent in melanoma 2.

J Ethnopharmacol

The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China. Electronic address:

Published: February 2025

Ethnopharmacological Relevance: Myocardial ischemia-reperfusion (I/R) injury stands as a significant contributor to cardiovascular disease. Shengmai-Yin (SMY), a traditional Chinese medicine, is widely used in myocardial infarct treatment. However, the specific mechanism of SMY in treating myocardial I/R injury is currently limited.

Aim Of Study: The study aimed to investigate the therapeutic efficacy of SMY in addressing myocardial I/R injury and elucidate its specific mechanisms.

Materials And Methods: The active components of SMY were quantified using Ultra-high performance liquid chromatography-MS/MS (UPLC-MS/MS). Sprague-Dawley (SD) rats were treated with SMY post-I/R model establishment. Cardiac injury was assessed by heart weight to body weight ratio. Left ventricular function and infarct volume were evaluated using ultrasound cardiography and TTC staining. Tissue lesions were examined via hematoxylin-eosin (HE) and Sirius Red staining. Co-Immunoprecipitation (Co-IP) technology explored absent in melanoma 2 (AIM2) and K27 Ubiquitination Modification (K27-Ub) interactions. Immunofluorescence staining detected Apoptosis-associated Speck-like Protein containing a CARD (ASC) and AIM2 co-localization. Adeno-associated Virus (AAV) was used to upregulate AIM2 levels, while Shikonin was used to downregulate AIM2, to explore its roles in SMY's therapeutic effects on I/R injury.

Results: SMY can reduce infarct size and enhance cardiac function. Furthermore, SMY can inhibit tissue fibrosis. Fibrosis markers and proinflammatory factors were reduced after SMY treatment. Serum levels of Lactate Dehydrogenase (LDH) and Creatine Kinase -MB (CK-MB) were also decreased. Mechanistically, SMY inhibits the activation of the AIM2 inflammasome by downregulating the K27 ubiquitination of AIM2. Overexpression of AIM2 reversed the anti-I/R effect of SMY, suggesting that AIM2 plays a crucial role in I/R injury. The AIM2 inhibitor counteracts the therapeutic effect of SMY.

Conclusion: SMY inhibits the K27 ubiquitination modification of AIM2 and inhibits the activation of AIM2 inflammasomes after myocardial I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2025.119553DOI Listing

Publication Analysis

Top Keywords

i/r injury
20
k27 ubiquitination
16
myocardial i/r
12
smy
11
aim2
11
absent melanoma
8
ubiquitination modification
8
smy inhibits
8
inhibits activation
8
activation aim2
8

Similar Publications

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI) is the primary cause of cardiac mortality worldwide. However, myocardial ischemia-reperfusion injury (MIRI) following reperfusion therapy is common in AMI, causing myocardial damage and affecting the patient's prognosis. Presently, there are no effective treatments available for MIRI.

View Article and Find Full Text PDF

Background: Cerebral ischemia/reperfusion (I/R) injury is the most prevalent form of brain stroke, affecting many patients worldwide. It is believed that oxidative stress and inflammation play major roles in the damage that occurs after the initiation of the disease.

Objectives: Therefore, for the first time, the current study aimed to investigate the neuroprotective effects of bupropion against cerebral I/R damage in a rat model.

View Article and Find Full Text PDF

Ischemeia-reperfusion (I/R) injury is a severe complication after restoring blood perfusion in acute myocardial infarction treatment, in which vascular endothelial cell dysfunction is considered as the key event to exacerbate myocardial injury. We have previously verified the protective function of ZNF580 in endothelial cells, however, the impact of ZNF580 on I/R injury and its underlying mechanisms have not been explored in depth. The purpose of the present study is to investigate the regulatory role of ZNF580 on myocardial I/R injury and confirm that ZNF580 is a potential therapeutic candidate for I/R injury treatment.

View Article and Find Full Text PDF

Testicular ischemia/reperfusion injury (TI/RI) is a significant clinical contributor to subfertility and infertility resulting from testicular torsion and subsequent detortion. Insufficient nitric oxide (NO) synthesis in TI/RI can result in endothelial dysfunction, as the vascular endothelium fails to produce sufficient NO to sustain appropriate vasodilation and blood perfusion. Many studies have found that NO plays an important role in the I/RI and its increase or decrease can affect the progression and outcome of I/RI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!