A rationally intended electrode material with evolved structure and composition enrichment is highly essential for optimizing the electrochemical performance for the superior charge storage demand of supercapacitors. In this report, we designed and synthesized cobalt-iron phosphide (CFP) hollow/porous nanocubes anchored on cobalt sulfide (CS) nanosheets (NSs) (i.e., CS@CFP) on nickel foam by a hydrothermal process, followed phosphorylation process, as well as a facile wet chemical route. The hollow/porous nanocube (three-dimensional (3D))-on-NS (2D) hybrid array structure and phosphorous incorporation in CS@CFP could significantly enhance the accessibility of electrolyte ions and the electrochemical kinetics of charge as well as redox-active sites.The resultant CS@CFP electrode demonstrated superior charge storage properties with an areal capacity value of 828.6µAhcm at 8 mAcm and a better rate performance than the other electrodes. Moreover, its practicability was also verified by fabricating a hybrid electrochemical cell (HEC).The fabricated HECdisplayed a notable areal capacity value of 681.4µAhcm at 10 mAcm with a superior rate performance of 74.6 % even at 70 mAcm. Besides, the HEC displayed maximum energy and power density values of 0.528mWhcm and 60.4mWcm, respectively. Also, the HEC confirmed its charge storage ability by energizing different portable electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.02.124DOI Listing

Publication Analysis

Top Keywords

charge storage
12
electrode material
8
superior charge
8
areal capacity
8
rate performance
8
prussian blue
4
blue analogue-derived
4
analogue-derived hollow
4
hollow structured
4
structured cop/fep
4

Similar Publications

We report the cosolvency effect of formamidinium lead triiodide (FAPbI) in a mixture of γ-butyrolactone (GBL) and 2-methoxyethanol (2ME), a phenomenon where FAPbI shows higher solubility in the solvent blend than in either alone. We found that FAPbI exhibits 10× higher solubility in 30% 2ME in GBL than in 2ME alone and 40% higher solubility than in GBL alone at 90 °C. This enhanced solubility is attributed to the disruption of the hydrogen bonding network within 2ME, allowing its hydroxyl and ether groups to interact more freely with the solute.

View Article and Find Full Text PDF

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

Enhanced Hot/Free Electron Effect for Photocatalytic Hydrogen Evolution Based on 3D/2D Graphene/MXene Composite.

Small

March 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.

View Article and Find Full Text PDF

Ion encapsulation by solvent molecules significantly impacts ion transport and the adsorption mechanism in energy storage devices. The aim of this investigation is to analyse the adsorption mechanisms associated with the solvation shell of lithium ions near the electrode/electrolyte interface during the charging process. Simulations using molecular dynamics (MD) are conducted for LiPF salt in PC solvent confined in between two flat carbon electrodes.

View Article and Find Full Text PDF

Improving the fast-charging capability of NbWO-based Li-ion batteries.

Nat Commun

March 2025

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.

The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li storage mechanisms in these materials. Herein, by visualizing Li intercalated into representative NbWO, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!