A novel Zinc-Tellurite borosilicate (ZTBS) glass system was successfully synthesized via the melt quench process. Its chemical composition is represented by the formula (44SiO-25BO-18NaO-6CaO-1ZrO-(6-x)ZnO-xTeO), and its weight fraction (x = 0, 2, 4, 6 wt%). The shielding properties, there is perfect agreement between the results of the theoretical calculation of the mass attenuation coefficient using the Phy-X/PSD and the compatible values derived from the WinXCom databases. Further, several photon shielding parameters were computed in the 15 keV-15 MeV energy range, including the mass attenuation coefficient (MAC), half value layer (HVL), mean free path (MFP), exposure buildup factor (EBF), and effective atomic number (Z). The preferred sample for gamma ray shielding is the sample with the highest TeO concentration (ZTBS3), according to the results. ZTBS3 glass samples have greater MAC and HVL values than other published borosilicate glasses at 662.61 k eV photon energy which reaches 0.07626 cm/g and 3.429 cm respectively. Also, LAC values is higher in the sample with the largest concentration of TeO. Furthermore, the computed HVL and MFP were lower than those of regular concrete. The shielding results indicate that the newly developed transparent ZTBS glasses compositions that are lightweight and have good shielding properties that may be suitable in shielding applications. Depending on the application, the ratio of TeO additive should be balanced between improved shielding and glass stability features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2025.111742 | DOI Listing |
J Colloid Interface Sci
March 2025
Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:
In recent years, zero-valent aluminum (ZVAl) has attracted significant attention as a novel material in the field of water treatment. However, its high reactivity leads to rapid aging when exposed to air, limiting its preservation and practical utilization. To address this issue, carbon materials modified ZVAl (C@ZVAl) were prepared by mechanical ball-milling to improve the aging resistance of ZVAl.
View Article and Find Full Text PDFPhytopathology
March 2025
Mendel University in Brno, Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Zemědělská 3, 613 00 Brno, Brno, Czech Republic, 613 00;
is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from at least twice. Since, cladistically, this renders 'paraphyletic', it has been proposed that evolutionary clades be split into multiple genera (Runge et al.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
Stretchability and flexibility are essential characteristics for high-performance electromagnetic interference (EMI) shielding materials in wearable and smart devices. However, achieving these mechanical properties while also maintaining high EMI shielding effectiveness (SE) for shielding materials remains a significant challenge. Here, a stretchable patterned carbon nanotube (CNT) array composite film, reinforced with two-dimensional (2D) nanomaterials (TiCT and graphene), is fabricated using a straightforward scraping method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain.
Modern electronics face several challenges during operation, such as interference of disruptive electromagnetic signals and high temperatures within a limited space. Both electromagnetic interference (EMI) and thermal management could be tackled simultaneously by employing smart efficient materials with high thermal and electrical conductivity. A dual-curing epoxy system, a new subset of adaptable materials, could potentially solve those challenges, with the proper selection of the reinforcement.
View Article and Find Full Text PDFChem Asian J
March 2025
RV College of Engineering, Chemical Engineering, INDIA.
MXenes are the carbides and nitrides of transition metals which are two dimensional in structure. High surface area, remarkable hydrophilicity, enhanced electrical conductivity, and unique surface functional groups are some of the distinguished properties of MXenes. These features make them suitable for numerous applications across domains such as sensing, biomedicine, catalysis, and electromagnetic interference shielding followed by hydrogen generation and storage at the forefront.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!