Dynamical intracranial EEG functional network controllability localizes the seizure onset zone and predicts the epilepsy surgical outcome.

J Neural Eng

MOE Frontier Science Center for Brain Science and Brain-machine Integration; Nanhu Brain-computer Interface Institute; College of Computer Science and Technology; State Key Laboratory of Brain-machine Intelligence; Department of Neurosurgery, Second Affiliated Hospital, School of Medicine , Zhejiang University, 38#, Zheda Road, Hangzhou, Zhejiang, 310058, CHINA.

Published: February 2025

Objective: Seizure onset zone (SOZ) localization and SOZ resection outcome prediction are critical for the surgical treatment of drug-resistant epilepsy but have mainly relied on manual inspection of intracranial electroencephalography (iEEG) monitoring data, which can be both inaccurate and time-consuming. Therefore, automating SOZ localization and surgical outcome prediction by using appropriate iEEG neural features and machine learning models has become an emerging topic. However, current channel-wise local features, graph-theoretic network features, and system-theoretic network features cannot fully capture the spatial, temporal, and neural dynamical aspects of epilepsy, hindering accurate SOZ localization and surgical outcome prediction.

Approach: Here, we develop a method for computing dynamical functional network controllability from multi-channel iEEG signals, which from a control-theoretic viewpoint, has the ability to simultaneously capture the spatial, temporal, functional, and dynamical aspects of epileptic brain networks. We then apply multiple machine learning models to use iEEG functional network controllability for localizing SOZ and predicting surgical outcomes in drug-resistant epilepsy patients and compare with existing neural features. We finally combine iEEG functional network controllability with representative local, graph-theoretic, and system-theoretic features to leverage complementary information for further improving performance.

Main Results: We find that iEEG functional network controllability at SOZ channels is significantly higher than that of other channels. We further show that machine learning models using iEEG functional network controllability successfully localize SOZ and predict surgical outcomes, significantly outperforming existing local, graph-theoretic, and system-theoretic features. We finally demonstrate that there exists complementary information among different types of neural features and fusing them further improves performance.

Significance: Our results suggest that iEEG functional network controllability is an effective feature for automatic SOZ localization and surgical outcome prediction in epilepsy treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/adba8dDOI Listing

Publication Analysis

Top Keywords

functional network
28
network controllability
28
ieeg functional
20
surgical outcome
16
soz localization
16
outcome prediction
12
localization surgical
12
neural features
12
machine learning
12
learning models
12

Similar Publications

The release of synaptic vesicles (SVs) at the synaptic junction is a complex process involving various specialized proteins that work in unison. Among these, Bassoon has emerged as a significant protein, particularly noted for its association with various neurological and aging-related diseases. Due to its structural and functional roles, Bassoon has become a focus of recent research, especially in understanding its implications in neurodegenerative and psychiatric disorders.

View Article and Find Full Text PDF

Study DesignNarrative Review.ObjectivesTo summarize the work of the AO Spine Knowledge Forum Tumor, specifically studies from the Epidemiology, Process and Outcomes in Spine Oncology (EPOSO) study.MethodsA narrative review of all published manuscripts from the EPOSO study was undertaken.

View Article and Find Full Text PDF

The IL-6 axis in vascular inflammation: effects of IL-6 receptor blockade on vascular lesions from patients with giant-cell arteritis.

Ann Rheum Dis

March 2025

Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic (member of European Reference Network [ERN]-for rare diseases RITA), University of Barcelona, Centre de Recerca biomèdica (CRB)-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. Electronic address:

Objectives: Blocking interleukin (IL)-6-receptor with tocilizumab has been a major advance in the treatment of giant-cell arteritis (GCA), supporting a crucial role of IL-6 receptor signalling. However, nearly half of the patients are not able to maintain glucocorticoid- free remission with tocilizumab. The impact of tocilizumab on vascular lesions of GCA is largely unknown since conflicting results have been obtained by imaging.

View Article and Find Full Text PDF

Integrating Genomic, Transcriptomic, and Phenotypic information to Explore Drug Resistance in Mycobacterium tuberculosis sub-lineage 4.2.2.2.

J Appl Microbiol

March 2025

Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia.

Aims: Mycobacterium tuberculosis (Mtb) remains a major global health challenge, particularly due to increasing drug resistance. Beyond the well-characterized mutations, the mechanisms involved in driving resistance appear to be more complex. This study investigated the differential gene expression of Ethiopian drug-resistant Mtb sub-lineage 4.

View Article and Find Full Text PDF

Cone Rod Homeobox (): literature review and new insights.

Ophthalmic Genet

March 2025

Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Virginia, USA.

The development of the neural retina requires a complex, spatiotemporally regulated network of gene expression. Here we review the role of the cone rod homeobox () transcription factor in specification and differentiation of retinal photoreceptors and its function in inherited retinal diseases such as cone-rod dystrophy (CoRD), dominant retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA). We delineate the findings of animal models and, more recently, human retinal organoids in elucidating molecular mechanisms of CRX activity and the pathogenesis of inherited photoreceptor degenerations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!