Doxorubicin-Induced Cardiac Remodeling: Mechanisms and Mitigation Strategies.

Cardiovasc Drugs Ther

Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China.

Published: February 2025

Background: The therapeutic prowess of doxorubicin in oncology is marred by its cardiotoxic consequences, manifesting as cardiac remodeling. Pathophysiological alterations triggered by doxorubicin include inflammatory cascades, fibrotic tissue deposition, vascular and valvular changes, and finally cardiomyopathy. These multifarious consequences collectively orchestrate the deterioration of cardiac architecture and function.

Method: By charting the molecular underpinnings and remedial prospects, this review aspires to contribute a novel perspective using latest publications to the ongoing quest for cardioprotection in cancer therapy.

Results And Discussion: Experimental analyses demonstrate the pivotal roles of oxidative stress and subsequent necrosis and apoptosis of cardiomyocytes, muscle cells, endothelial cells, and small muscle cells in different parts of the heart. In addition, severe and unusual infiltration of macrophages, mast cells, and neutrophils can amplify oxidative damage and subsequent impacts such as chronic inflammatory responses, vascular and valvular remodeling, and fibrosis. These modifications can render cardiomyopathy, ischemia, heart attack, and other disorders. In an endeavor to counteract these ramifications, a spectrum of emerging adjuvants and strategies are poised to fortify the heart against doxorubicin's deleterious effects.

Conclusion: The compendium of mitigation tactics such as innovative pharmacological agents hold the potential to attenuate the cardiotoxic burden.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10557-025-07673-6DOI Listing

Publication Analysis

Top Keywords

cardiac remodeling
8
vascular valvular
8
muscle cells
8
doxorubicin-induced cardiac
4
remodeling mechanisms
4
mechanisms mitigation
4
mitigation strategies
4
strategies background
4
background therapeutic
4
therapeutic prowess
4

Similar Publications

SPeak to the heart.

Immunity

March 2025

Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China. Electronic address:

Neuroimmune regulation modulates responses to cardiovascular stress and injury. In this issue of Immunity, Perrotta et al. delineate a heart-brain-spleen axis that induces adaptive cardiac remodeling in response to pressure overload, highlighting a SPeak mechanism (spleen-derived PlGF efflux activates cardiac macrophages).

View Article and Find Full Text PDF

Atrial fibrillation (AF) is one of the most common cardiac diseases and a complicating comorbidity for multiple associated diseases. Many clinical decisions regarding AF are currently based on the binary recognition of AF being present or absent with the categorical appraisal of AF as continued or intermittent. Assessment of AF in clinical trials is largely limited to the time to (first) detection of an AF episode.

View Article and Find Full Text PDF

Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.

View Article and Find Full Text PDF

Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling.

J Cereb Blood Flow Metab

March 2025

Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.

Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation.

View Article and Find Full Text PDF

Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic targets. SPP1+ macrophages, characterized by elevated expression of () and often co-expressing (), localize to fibrotic niches in the heart and other organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!