Transition Metal-Catalyzed Nitrogen Atom Insertion into Carbocycles.

Acc Chem Res

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.

Published: February 2025

Conspectus-Heterocycles are essential in pharmaceutical engineering, materials science, and synthetic chemistry. Recently, skeletal editing, which involves making specific point changes to the core of a molecule through single-atom insertion, deletion, or transmutation, has gained attention for its potential to modify complex substrates. In this context, the insertion of nitrogen atoms into carbocycles to form -heterocycles has emerged as a significant research focus in modern synthetic chemistry owing to its novel synthetic logic. This distinctive retrosynthetic approach enables late-stage modification of molecular skeletons and provides a different pathway for synthesizing multiply substituted -heterocycles. Nevertheless, nitrogen atom insertion into carbocycles has proven challenging because of the inherent inertness of carbon-based skeletons and difficulty in cleaving C-C bonds. Therefore, selective insertion of nitrogen atoms for skeletal editing remains a challenging and growing field in synthetic chemistry. This Account primarily highlights the contributions of our laboratory to this active field and acknowledges the key contributions from other researchers. It is organized into two sections based on the type of the carbocycle. The first section explores the insertion of nitrogen atoms into cycloalkenes. Recent Co-catalyzed oxidative azidation strategies have enabled nitrogen atom insertion into cyclobutenes, cyclopentenes, and cyclohexenes, facilitating the synthesis of polysubstituted pyridines, which has been conventionally challenging through pyridine cross-coupling. The subsequent section highlights our discovery in the realm of nitrogen atom insertion into arenes. The site-selective skeletal editing of stable arenes is challenging in synthetic chemistry. We developed a method for the intramolecular insertion of nitrogen atoms into the benzene rings of 2-amino biaryls by suppressing the competing C-H insertion process by using a paddlewheel dirhodium catalyst. In addition, to address the challenging site-selective issues in nitrogen atom insertion, we employed arenols as substrates, which could act as selective controlling elements in site-selective skeletal editing. We reported a Cu-catalyzed nitrogen atom insertion into arenols, which proceeds through a dearomative azidation/aryl migration process, enabling the site-selective incorporation of nitrogen atoms into arenes. Inspired by this result, we recently extended the reaction model by using a Fe-catalyst to facilitate the ring contraction of the nitrogen-inserted product, achieving the carbon-to-nitrogen transmutation of arenols. Various complex polyaromatic arenols could effectively undergo the desired atom's transmutation, presenting considerable potential for various applications in materials chemistry. In this Account, we present an overview of our achievements in nitrogen atom insertion reactions, with a focus on the reaction scopes, mechanistic features, and synthetic applications. We anticipate that this Account will provide valuable insights and propel the development of innovative methodologies in both skeletal editing and -heterocycle synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.4c00854DOI Listing

Publication Analysis

Top Keywords

nitrogen atom
28
atom insertion
28
skeletal editing
20
nitrogen atoms
20
synthetic chemistry
16
insertion nitrogen
16
insertion
13
nitrogen
12
insertion carbocycles
8
chemistry account
8

Similar Publications

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

Synergistic Bifunctional Covalent Organic Framework for Efficient Photocatalytic CO Reduction and Water Oxidation.

J Am Chem Soc

March 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun 130012, P. R. China.

The scientific community has been actively researching artificial photosynthesis to promote ecologically sustainable living and address environmental issues. However, designing photocatalysts with active sites that are effective for both CO reduction and water oxidation remains a significant challenge. Thus, we present the development of a donor-acceptor covalent organic framework (D-A COF), that integrates two distinct metal coordination environments through structure-activity relationships.

View Article and Find Full Text PDF

Inhibiting demetalation of ZnNC via bimetallic CoZn alloy for an efficient and durable oxygen reduction reaction.

J Colloid Interface Sci

March 2025

Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:

Inhibition of demetalation due to electrochemical dissolution of metal active centers is a major challenge for the real-world commercialization of transition metals and nitrogen co-doped carbon (MNC) material catalysts. This research utilized a microchannel reactor to synthesize zeolitic imidazolate framework-8@zeolitic imidazolate framework-67, resulting in a CoZn/ZnNC material produced through a core-shell pyrolysis strategy. Direct synergistic interaction of CoZn alloy nanoparticles and ZnNC improves the activity and durability of the oxygen reduction reaction.

View Article and Find Full Text PDF

Electrocatalytic hydrogen evolution reaction (HER) via water splitting is a prospective technology for achieving the sustainable production of hydrogen. So, ruthenium-based electrocatalysts have been extensively studied. However, metallic ruthenium tends to agglomerate due to the high cohesive energy, resulting in decreased HER performance in practical usage.

View Article and Find Full Text PDF

Single-Atom-Embedded Nitrogen-Doped Graphene as Efficient Electrocatalysts for the CO Reduction Reaction.

Langmuir

March 2025

Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology, Xinjiang University, Urumqi 830017, China.

Single-atom catalysts (SACs) have displayed unprecedented activity and selectivity for electrochemical CO reduction reaction (CORR). Herein, a series of metal single atoms embedded on nitrogen-doped graphene (M-NG, where M = In, Tl, Ge, Sn, Pb, Sb, and Bi) is systematically evaluated as CORR electrocatalysts by density functional theory (DFT) calculations. The computational results show that most M-NG exhibit better CORR selectivity over the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!