Heterotaxy (HTX) is characterized by an abnormality in the organ arrangement along the Left-Right (LR) axis and is caused by the disruption of LR patterning in early development. LR asymmetry is critical for multiple organs. Specifically, proper LR patterning is crucial for cardiac function and is a cause of congenital heart disease (CHD). CACNA1G is a candidate gene identified in patients with CHD and HTX. This gene encodes a T-type, low-voltage-activated calcium channel and is a member of the Cav3.1 channel family. However, its function in cardiac or embryonic development remains unknown. Here, we show that abnormal cacna1g expression in Xenopus tropicalis recapitulates the HTX phenotype found in the patient cohort. By examining early LR patterning markers, including pitx2c and dand5, we discovered that both markers are expressed abnormally, suggesting that LR patterning is disrupted at the earliest stages of the LR signaling cascade. Since cilia have been described as key regulators of LR asymmetry, we checked the process of cilia formation in cacna1g crispants. The LR Organizer (LRO) contained reduced cilia quantity in the cacna1g crispants, which may explain the LR defects. In conclusion, the abnormal expression of cacna1g affects cilia in the LRO, leading to abnormal LR patterning and cardiac looping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867209PMC
http://dx.doi.org/10.1002/dvg.70009DOI Listing

Publication Analysis

Top Keywords

candidate gene
8
xenopus tropicalis
8
cacna1g crispants
8
cacna1g
6
patterning
6
cacna1g heterotaxy
4
heterotaxy candidate
4
gene plays
4
plays role
4
role ciliogenesis
4

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality among the elderly in China. Genetic predisposition is a recognized risk factor for COPD, with emerging as a promising candidate gene due to its involvement in smoking behavior and lung function. This study aimed to investigate the association between eight SNPs and COPD susceptibility in the Chinese elderly population.

View Article and Find Full Text PDF

The development of standard drugs for some unusual cancers, including estrogen-nonresponsive breast cancer, is somewhat difficult within a very short time. So, considering the current situation, phytoestrogen may be a potential candidate for unraveling chemotherapeutics agents. The reason for this review article is to manifest overall information regarding the effects of phytoestrogen on triple-negative breast cancer (TNBC), along with its related cellular and molecular pathways in different TNBC models.

View Article and Find Full Text PDF

Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects.

View Article and Find Full Text PDF

The Enhancer-Promoter-Mediated Transcription During Neurite Regrowth of Injured Cortical Neurons.

Cells

February 2025

Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.

Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons.

View Article and Find Full Text PDF

Background: Congenital hypothyroidism (CH) is the most common neonatal disorder, primarily caused by thyroid dysgenesis (TD). While the genetic cause has been identified in less than 5% of TD cases, there is an urgent need to investigate additional gene mutations that may be responsible. In 2018, TUBB1 was identified as a novel candidate gene associated with TD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!