Neonatal hypoxic-ischemic brain damage (HIBD) is considered as a major cause of long-term cognitive impairments in newborns. It has been demonstrated that gut microbiota is closely associated with the prognosis of various neurological disorders. However, the role of microbiota-gut-brain axis on cognitive function following neonatal HIBD remains elusive. In this experiment, the correlation analysis supported the involvement of gut microbial changes following hypoxic-ischemic (HI) insult in the development of long-term cognitive impairments. Subsequent experiment revealed the involvement of the intestinal dysfunction in the hippocampal neuroinflammation and synaptic injury. In causal relationship validation experiments, fecal microbiota transplantation (FMT) from cognitively normal rats could restore gut microbial composition, improve intestinal dysfunction, reduce the serum levels of lipopolysaccharides (LPS) and inflammatory mediators, and alleviate neuroinflammation, synaptic damage and cognitive impairments in neonatal HIBD recipient rats. Conversely, the FMT from neonatal HIBD rats could induce above adverse pathological changes in the normal recipient rats. Moreover, oral administration of anti-inflammatory agent dexamethasone (DEX) exhibited the potential to alleviate these detrimental effects in neonatal HIBD rats, with the efficacy being partly reliant on gut microbiota. Further experiment on the potential molecular mechanisms using RNA sequencing indicated a significant increase in the toll-like receptor 4 (TLR4) gene in the intestinal tissues of neonatal HIBD rats. Additionally, the interventions such as TLR4 inhibitor TLR4-IN-C34 administration, FMT, and oral DEX were demonstrated to modulate intestinal function by inhibiting the LPS/TLR4 signaling pathway, thereby exerting neuroprotective effects. Collectively, these findings underscore the contribution of gut microbial dysbiosis post HI insult in activating the LPS/TLR4 signaling pathway, triggering intestinal inflammation and dysfunction, exacerbating systemic inflammation, and consequently worsening synaptic and cognitive impairments in neonatal HIBD rats. Hence, rectifying gut microbial dysbiosis or regulating intestinal function may represent a promising strategy for alleviating long-term cognitive impairments in neonates affected by HIBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866968PMC
http://dx.doi.org/10.1080/19490976.2025.2471015DOI Listing

Publication Analysis

Top Keywords

cognitive impairments
24
neonatal hibd
24
gut microbial
20
long-term cognitive
16
hibd rats
16
microbial dysbiosis
12
intestinal dysfunction
12
neonatal
8
hibd
8
gut microbiota
8

Similar Publications

Introduction: Individuals with Down syndrome (DS) exhibit neurological deficits throughout life including the development of in Alzheimer's disease (AD) pathology and cognitive impairment. At the cellular level, dysregulation in neuronal gene expression is observed in postmortem human brain and mouse models of DS/AD. To date, RNA-sequencing (RNA-seq) analysis of hippocampal neuronal gene expression including the characterization of discrete circuit-based connectivity in DS remains a major knowledge gap.

View Article and Find Full Text PDF

Alzheimer's disease and other cognitive impairments are a growing problem in the healthcare world with the ageing population. There are currently no effective treatments available; however, it has been suggested that targeting neuroinflammation may be a successful approach in slowing the progression of neurodegeneration. Reducing the destructive hyperinflammatory pathology to maintain homeostasis in neural tissue is a promising option to consider.

View Article and Find Full Text PDF

Introduction: Cochlear implant (CI) success is often assessed using subjective tests like word recognition scores (WRS). However, these tests are unsuitable for children, non-native speakers, and individuals with cognitive impairments. Mismatch negativity (MMN), an objective measure of cortical auditory processing, offers a promising alternative for evaluating speech perception.

View Article and Find Full Text PDF

Dysphagia is a high-profile dysfunction that often occurs after a stroke, with a prevalence of 50%-80%. Post-stroke dysphagia (PSD) often leads to serious complications such as pneumonia and malnutrition, reducing the quality of life and leading to poor prognosis or even death. PSD causes these adverse physical and psychological impairments to patients, which becomes a challenge for both patients and physicians.

View Article and Find Full Text PDF

Background: The optimal treatment methods for delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) were not identified. Thus, this study was conducted to compare the efficacies of intermittent theta burst stimulation (iTBS) and short-chain fatty acids (SCFAs) in treating cognitive dysfunction and anxiety symptoms of DEACMP rat.

Methods: In phase I, a DEACMP rat model was built to assess the inflammation levels in the hippocampus and levels of SCFAs in the serum of DEACMP rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!