Microbial communities in marine sediments contribute significantly to the overall health and resiliency of marine ecosystems. However, increased human disturbance undermines biodiversity and, hence, natural functionality provided by marine sediments. Here, through a deep shotgun metagenomics sequencing of the sediment microbiome and COI metabarcoding of benthic metazoans, we demonstrate that >50% of the microorganisms' and metazoan's taxonomic variation can be explained by specific chemical pollution indices. Interestingly, there was a significant correlation between the similarity in microbiome communities' taxonomical and functional attributes and the similarity of benthic metazoans community composition. Furthermore, mediation analysis was conducted to evaluate the microbiome-mediated indirect effect, suggesting that microbial species and functions accounted for 36% and 26%, respectively, of the total effect of pollution on the benthic metazoans. Our study introduces a multi-level perspective for future studies in urbanized coastal areas to explore marine ecosystems, revealing the impact of pollution stress on microbiome communities and their critical biogeochemical functions, which in turn may influence macrofaunal composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851482 | PMC |
http://dx.doi.org/10.1093/ismeco/ycae141 | DOI Listing |
ISME Commun
January 2025
Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany.
Microbial communities in marine sediments contribute significantly to the overall health and resiliency of marine ecosystems. However, increased human disturbance undermines biodiversity and, hence, natural functionality provided by marine sediments. Here, through a deep shotgun metagenomics sequencing of the sediment microbiome and COI metabarcoding of benthic metazoans, we demonstrate that >50% of the microorganisms' and metazoan's taxonomic variation can be explained by specific chemical pollution indices.
View Article and Find Full Text PDFSci Adv
February 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany.
The proliferation of marine algae in the Neoproterozoic Era is thought to have stimulated the ecology of predatory microbial eukaryotes. To test this proposal, we introduced algal particulate matter (APM) to marine sediments underlying a modern marine oxygen minimum zone with bottom-water oxygen concentrations approximating those of the late Neoproterozoic water column. We found that under anoxia, APM significantly stimulated microbial eukaryote gene expression, particularly genes involved in anaerobic energy metabolism and phagocytosis, and increased the relative abundance of 18 rRNA from known predatory clades.
View Article and Find Full Text PDFR Soc Open Sci
December 2024
Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, and Department of Geology, Northwest University, Xi'an 710069, People's Republic of China.
A metazoan-dominated biological pump was established early in the Phanerozoic, a time that saw the evolution of the first pelagic euarthropod zooplankton such as some species of the Cambrian bivalved euarthropod . Pelagic groups evolved from benthic stock, in many cases through neoteny and retention of characteristics from planktic larval stages. However, brooded eggs and did not have a planktic larval stage, precluding this route into the pelagic realm.
View Article and Find Full Text PDFProc Biol Sci
December 2024
School of Biological Sciences, Manter Hall 402, University of Nebraska, Lincoln, NE 68588, USA.
Understanding the roles of habitat filtering, dispersal limitations and biotic interactions in shaping the organization of animal communities is a central research goal in ecology. Attempts to extend these approaches into deep time have the potential to illuminate the role of these processes over key intervals in evolutionary history. The Ediacaran marks one such interval, recording the first macroscopic benthic communities and a stepwise intensification in animal ecosystem engineering.
View Article and Find Full Text PDFMicrobiol Spectr
November 2024
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Unlabelled: The microbial communities associated with sponges contribute to the adaptation of hosts to environments, which are essential for the trophic transformation of benthic-marine coupling. However, little is known about the symbiotic microbial community interactions and adaptative strategies of high- and low-microbial abundance (HMA and LMA) sponges, which represent two typical ecological phenotypes. Here, we compared the 1-year dynamic patterns of microbiomes with the HMA sponge and two LMA sponge species sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!