Background: Idiopathic Pulmonary Fibrosis (IPF), an interstitial lung disease of unknown etiology, remains incurable with current therapies, which fail to halt disease progression or restore lung function. However, Feibi Recipe No. 2 (FBR2), a clinically validated traditional Chinese medicine formula, exhibits potential as an IPF treatment.
Objective: This study aimed to investigate the regulatory effect of FBR2 on ferroptosis through the SIRT3/p53 pathway and its therapeutic potential in improving IPF.
Methods: Pulmonary fibrosis was induced in C57BL/6J mice by intratracheal instillation of Bleomycin (BLM), followed by FBR2 treatment via gavage. Assessments encompassed histopathology, ELISA for cytokine detection, IHC and Western blot for protein expression analysis, and qRT-PCR for gene expression quantification. Transmission electron microscopy (TEM) was used to observe mitochondrial morphology. The roles of Erastin and the SIRT3 inhibitor 3-TYP were also explored to elucidate FBR2's mechanisms of action.
Results: FBR2 treatment significantly mitigated BLM-induced lung injury in mice, as evidenced by improved body weight and survival rates, and reduced levels of inflammatory cytokines, including IL-6 and TNF-α. FBR2 decreased collagen deposition in lung tissue, as shown by Masson's staining and IHC detection of Col-I and α-SMA, confirming its anti-fibrotic effects. It also reduced iron and MDA levels in lung tissue, increased GSH-Px activity, improved mitochondrial morphology, and enhanced the expression of GPX4 and SLC7A11, indicating its ferroptosis-inhibitory capacity. Furthermore, FBR2 increased SIRT3 levels and suppressed p53 and its acetylated forms, promoting the translocation of p53 from the nucleus to the cytoplasm where it co-localized with SIRT3. The protective effects of FBR2 were reversed by Erastin, confirming the central role of ferroptosis in pulmonary fibrosis treatment. The use of 3-TYP further confirmed FBR2's intervention in ferroptosis and cellular senescence through the SIRT3/p53 pathway.
Conclusion: FBR2 shows therapeutic potential in a BLM-induced pulmonary fibrosis mouse model, with its effects mediated through modulation of the ferroptosis pathway via the SIRT3/p53 mechanism. This study provides novel evidence for the targeted treatment of IPF and offers further insights into its pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850536 | PMC |
http://dx.doi.org/10.3389/fphar.2025.1509665 | DOI Listing |
Life Sci
March 2025
Department of Physiology, Hebei Medical University, 050017, Hebei, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017, Hebei, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, 050017, Hebei, China. Electronic address:
Aims: The present study aimed to investigate the direct link between trimethylamine N-oxide (TMAO) and diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF).
Materials And Methods: Diastolic dysfunction is the main manifestation of HFpEF, so the "two-hit" mouse HFpEF model are used. After treated with high-fat diet (HFD) and N-nitro-l-arginine methyl ester (L-NAME) for 8 weeks, the cardiac function, myocardial fibrosis, oxidative stress levels, and molecular alterations were assessed.
J Pharmacol Exp Ther
February 2025
Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.
Pulmonary fibrosis encompasses different chronic interstitial lung diseases, and the predominant form, idiopathic pulmonary fibrosis, remains to have a poor prognosis despite 2 approved therapies. Although the exact pathobiological mechanisms are still incompletely understood, epithelial injury and aberrant wound healing responses contribute to the gradual change in lung architecture and functional impairment. Lysophosphatidic acid (LPA)-induced lysophosphatidic receptor 1 (LPA1) signaling was proposed to be a driver of lung fibrosis, and LPA1 antagonists have shown promising antifibrotic profiles in early clinical development.
View Article and Find Full Text PDFPediatr Pulmonol
March 2025
Department of Pediatrics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Background: Genetic modifiers have been identified that increase the risks of lung disease and other complications, such as diabetes in people with cystic fibrosis (CF). Variants in the hemochromatosis gene (HFE) were reported in a study of adults to be associated with worse lung disease.
Objectives: To ascertain the frequency of HFE variants, particularly C282Y (c.
Rheumatology (Oxford)
March 2025
Division of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH, USA.
This mini review explores the association of interstitial lung disease (ILD) with antineutrophil cystoplasmic antibodies (ANCA) and the clinical syndrome of microscopic polyangiitis (MPA). Reports on radiographic and histopathologic findings as well as genetic predispositions are reviewed. Based on this evidence a concept for the pathogenesis of the relationship of ILD, MPO-ANCA and MPA is proposed.
View Article and Find Full Text PDFTher Adv Respir Dis
March 2025
Department of Medicine, National Jewish Health, Denver, CO, USA.
Nontuberculous mycobacteria (NTM) are ubiquitous, opportunistic pathogens that can cause lung disease in people with non-cystic fibrosis bronchiectasis (NCFB) and cystic fibrosis (CF). The incidence of NTM pulmonary infections and lung disease has continued to increase worldwide over the last decade among both groups. Notably, women with NCFB NTM pulmonary disease (NTM-PD) bear a disproportionate burden with NTM rates increasing in this population as well as having consistently higher incidence of NTM-PD compared to men.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!