Partial Nitritation/Anammox (PN/A) can achieve green, economical, and efficient biological nitrogen removal; however, the PN process contributes significantly to nitrous oxide (NO, the third most important greenhouse gas) emissions. Balancing the stability of PN systems while reducing NO emissions, particularly under varying salinity conditions, is a key challenge in applying PN/A for high-salinity and high-ammonia wastewater treatment. This study explored the long-term effects of salinity on PN performance and NO emissions in PN systems treating high-ammonia wastewater. The results showed that the specific ammonia oxidation rates of the control and two salinity-acclimated PN reactors were 78.84, 75.03, and 42.60 mg N/(g VSS·h), indicating that low salinity (2.5 g NaCl/L) had minimal effect, while high salinity (10 g NaCl/L) significantly inhibited ammonia-oxidating bacteria and associated nitritation processes. Moreover, NO emission factors increased from 0.08 ± 0.04% to 0.24 ± 0.03% as salinity rose from 0 to 10 g NaCl/L. Further analysis revealed that salinity stimulated NO production in both aerobic and anoxic stages. Particularly, the NO production increased by 2.84-11.14 times in the aerated stage and by 0.61-2.04 times in the nonaerated stage (i.e. anoxic and settling stages). Isotopic pathway analysis indicated that salinity enhanced NO production primarily by stimulating the nitrite reduction pathway. Additionally, the mechanism investigation examined the combined effects of salinity-induced changes in sludge properties and microbial community on NO emissions. These findings provide valuable insights for applying PN systems to treat high-strength wastewater and understanding the mechanisms of NO emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851288 | PMC |
http://dx.doi.org/10.1016/j.wroa.2025.100311 | DOI Listing |
Bioresour Technol
February 2025
Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:
Aerobic granular sludge (AGS) reactors are promising for treating high ammonia wastewaters, yet the roles of granules and flocs in nitrogen removal under varying carbon to nitrogen (COD/N) ratios remain unclear. This study investigated microbial communities and their contributions to N removal as the COD/N ratio shifted from 6 to 4, and to 2. Results showed granules contributed 53-64 % nitrification capacity at higher COD/N ratios (6 and 4), but flocs contributed more (50-63 %) at a ratio of 2.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
Partial Nitritation/Anammox (PN/A) can achieve green, economical, and efficient biological nitrogen removal; however, the PN process contributes significantly to nitrous oxide (NO, the third most important greenhouse gas) emissions. Balancing the stability of PN systems while reducing NO emissions, particularly under varying salinity conditions, is a key challenge in applying PN/A for high-salinity and high-ammonia wastewater treatment. This study explored the long-term effects of salinity on PN performance and NO emissions in PN systems treating high-ammonia wastewater.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFEnviron Res
March 2025
Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China. Electronic address:
Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada. Electronic address:
The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m/day) with and without biochar (BC) addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!