A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Tissue-Specific Multifunctionalized Nanotechnological Platform Encapsulating Riluzole Against Motor Neuron Diseases. | LitMetric

Background: Motor neuron diseases are neurological disorders characterized by progressive degeneration of upper and/or lower motor neurons. Amyotrophic Lateral Sclerosis (ALS) is the most common form of motor neuron diseases, where patients suffer progressive paralysis, muscle atrophy and finally death. Despite ALS severity, no treatment is safe and fully effective. In this area, Riluzole was the first drug approved and it constitutes the gold-standard for this pathology. However, to obtain suitable therapeutic efficacy, Riluzole requires high doses that are associated with severe adverse effects in other tissues. To attain Riluzole therapeutic efficacy avoiding other organs side-effects, new therapeutic strategies to enhance the delivery of Riluzole specifically to motor neurons constitute an unmet medical need. In this area, we have developed a novel multifunctional nanostructurated carrier to selectively deliver Riluzole to motor neurons.

Results: This work develops and characterizes at in vitro and in vivo levels a tissue-targeted formulation of peptide and PEG-labelled PLGA nanoparticles encapsulating Riluzole. For this purpose, pVEC, a cell penetrating peptide able to increase transport through the blood-brain barrier, was attached to the nanoparticles surface. The multifunctionalized nanoparticles show suitable characteristics for the release of Riluzole in the central nervous system and were detected in motor neurons within 1 h after administration while significantly reducing the concentration of Riluzole in non-therapeutic organs responsible of side effects.

Conclusion: A novel drug delivery system has been developed and characterized, demonstrating enhanced CNS biodistribution of riluzole, which shows promise as efficient therapeutic tool for motor neuron diseases, including amyotrophic lateral sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853070PMC
http://dx.doi.org/10.2147/IJN.S479819DOI Listing

Publication Analysis

Top Keywords

motor neuron
16
neuron diseases
16
riluzole motor
12
motor neurons
12
riluzole
10
encapsulating riluzole
8
motor
8
amyotrophic lateral
8
lateral sclerosis
8
therapeutic efficacy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!