Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The hereditary spastic-ataxia spectrum disorders are a group of disabling neurological diseases. The traditional genetic testing pathway is complex, multistep and leaves many cases unsolved. We aim to streamline and improve this process using long-read sequencing.
Methods: We developed a targeted long-read sequencing strategy with the capacity to characterise the genetic variation of all types and sizes within 469 disease-associated genes, in a single assay. We applied this to a cohort of 34 individuals with unsolved spastic-ataxia. An additional five individuals with a known genetic diagnosis were included as positive controls.
Results: We identified causative pathogenic variants that would be sufficient for genetic diagnosis in 14/34 (41%) unsolved participants. The success rate was 5/11 (45%) in those who were naïve to genetic testing and 9/23 (39%) in those who were undiagnosed after prior genetic testing, completed on a clinical basis. Short tandem repeat expansions in FGF14 were the most common (7/34, 21%). Two individuals (2/34, 6%) had biallelic pathogenic expansions in RFC1 and one individual had a monoallelic pathogenic expansion in ATXN8OS/ATXN8. Causative pathogenic sequence variants other than short tandem repeat expansions were found in four individuals, including in VCP, STUB1, ANO10 and SPG7. Furthermore, all five positive controls were identified.
Interpretation: Our results demonstrate the utility of targeted long-read sequencing in the genetic evaluation of patients with spastic-ataxia spectrum disorders, highlighting both the capacity to increase overall diagnostic yield and to streamline the testing pathway by capturing all known genetic causes in a single assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/acn3.70008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!