Strategies based on biodegradable polymers to replace traditional petroleum-based plastics have become research hotspots, while designing multifunctional composite films as packaging materials remains a challenging task. Herein, mussel-inspired hollow mesoporous polydopamine (HMPDA) is prepared and used as a secondary reaction platform to immobilize silver nanoparticles (HMPDA@Ag), which are then co-doped into a polyvinyl alcohol (PVA) matrix in combination with naturally derived 2D montmorillonite (MMT). Benefiting from the noncovalent interactions between the composite particles and MMT with the PVA matrix, as well as the synergistic effects between nanofillers, the fabricated films exhibit a great tensile strength of 424.7 MPa, a high toughness of 1093.7 MJ m, and a significantly improved water barrier property. HMPDA@Ag nanoparticles endow the film with excellent properties such as a photothermal synergistic antibacterial effect, ultraviolet shielding, and antioxidation. Additionally, the developed films exhibit significantly improved flame retardancy. Compared with pure PVA, the reduction in peak heat release rate (PHRR) and total heat release (THR) reaches 8.2% and 19.5%, respectively, alongside a notable inhibition of smoke release and melt dripping behavior. This work provides a novel idea for manufacturing multifunctional PVA-based composite films to reduce the environmental impact resulting from the excessive use of non-biodegradable, petroleum-based packaging materials worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202411091 | DOI Listing |
J Am Chem Soc
March 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
Stretchability and flexibility are essential characteristics for high-performance electromagnetic interference (EMI) shielding materials in wearable and smart devices. However, achieving these mechanical properties while also maintaining high EMI shielding effectiveness (SE) for shielding materials remains a significant challenge. Here, a stretchable patterned carbon nanotube (CNT) array composite film, reinforced with two-dimensional (2D) nanomaterials (TiCT and graphene), is fabricated using a straightforward scraping method.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Material Science and Engineering, Peking University, Beijing 100871, China.
The integration of two-dimensional (2D) nanomaterials into polymer-based packaging presents a promising avenue for sustainable, high-performance materials. This perspective explores the roles of colloidal interactions in the assembly of 2D materials into thin films for packaging applications. We begin by analyzing the types of colloidal forces present in 2D nanomaterials and their impact on dispersion and stability.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Wide Bandgap Semiconductors and Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
The progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO and SiO/HfO gate dielectrics grown by atomic layer deposition (ALD) on SiC trench structures. The trench structure morphology was revealed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
This paper reports on the effect of the micro-morphological characteristics of stainless steel electrodes on vacuum breakdown properties under the action of a strong electric field generated by high-power electric pulses. Using chemical passivation modification and atomic layer deposition (ALD) technology, alumina composite films were prepared on the surface of the stainless steel electrodes to reshape the surface microstructure of the electrodes. The surface morphology features of the electrodes were characterized in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!