Repressor element-1 silencing transcription factor or neuron-restrictive silencer factor (REST/NRSF) is an extensively studied neuronal gene regulator both in neuronal cells and non-neuronal cells. Even though the role of REST in host cellular gene regulation is well established, its role in the establishment of viral infections and its capability to stabilize and destabilize such viral infections are scarcely studied. Co-repressor and DNA modifiers are involved in REST-mediated repressive action of its target genes. The role of REST and co-repressors together or individually in the regulation of viral as well as host genes has been unraveled in a few viruses such as HIV and influenza as well as two of the herpesvirus family members, namely herpes simplex virus type 1 (HSV-1) and Kaposi's sarcoma-associated herpesvirus (KSHV). Here, we summarize all such virus studies involved with REST to gain a better insight into REST biology in virus infections. We also focus on unraveling the possible RE-1 binding sites in the Epstein-Barr virus (EBV) genome, a well-known human oncogenic herpesvirus that is associated with infectious mononucleosis and neoplasms such as B-cell lymphomas, nasopharyngeal carcinoma, gastric carcinoma, etc. An in silico-based approach was employed towards the prediction of such possible RE-1 binding elements in the EBV genome. This review advances the present knowledge of REST in virus infection which will aid in future efforts towards a better understanding of how REST acts in herpesviruses and other viruses for their infections and pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860772 | PMC |
http://dx.doi.org/10.3390/v17020234 | DOI Listing |
Int J STD AIDS
March 2025
MAP Centre for Urban Health Solutions, St. Michael's Hospital, Toronto, ON, Canada.
BackgroundHepatitis B virus (HBV) disproportionately affects people at risk of HIV. Encounters for HIV post-exposure prophylaxis (PEP) create opportunities for HBV screening and prevention. We quantified HBV prevalence, susceptibility, and active/passive immunization use among patients seeking HIV PEP.
View Article and Find Full Text PDFHealth Expect
April 2025
Department of General Practice, Université Clermont Auvergne, UFR Medicine, Clermont-Ferrand, France.
Introduction: Health restrictions resulting from COVID-19 made it more difficult for families to mourn. The death announcement is a significant moment for families. The aim of this study was to explore the experiences, perceptions and expectations of families who were informed of the death of a close relative in the hospital, at home or in a care home for dependent elderly people (EHPAD) during the COVID-19 pandemic.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Fudan University, 131, Dongan Road, Shanghai, CHINA.
Nanovaccines hold significant promise for the prevention and treatment of infectious diseases. However, the efficacy of many nanovaccines is often limited by inadequate stimulation of both innate and adaptive immune responses. Herein, we explore a rational vaccine strategy aimed at modulating innate cell microenvironments within lymph nodes (LNs) to enhance the generation of effective immune responses.
View Article and Find Full Text PDFLiver Int
April 2025
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease globally. MASLD is a multisystem disease where metabolic dysfunction plays a key role in the development of MASLD and its most relevant liver-related morbidities and extrahepatic complications, such as cardiovascular disease, chronic kidney disease and certain types of extrahepatic cancers. Among the least examined MASLD-related extrahepatic complications, an ever-increasing number of observational studies have reported a positive association between MASLD and the risk of serious bacterial infections (SBI) requiring hospital admission.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!