A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revealing the Molecular Regulatory Mechanism of Flavonoid Accumulation in Tender Leaves of Tea Plants by Transcriptomic and Metabolomic Analyses. | LitMetric

Flavonoids are secondary metabolites that are beneficial to life activities and are mainly concentrated in buds and leaves in the form of glycosides. Flavonoid glycosides have important effects on the properties and quality of tea plants. Research has shown that the abundance of flavonoid glycosides varies greatly among different cultivars, but research on the regulatory mechanisms that cause their differential accumulation among tea plant cultivars with different leaf colors is lacking. In this study, an integrated analysis of metabolomics and transcriptomics was conducted to determine the regulatory networks regulating astringency and color-related flavonoids in tea plant cultivars with diverse leaf colors. A total of five anthocyanidins, four catechins, and nine flavonol glycosides were found to partially contribute to the differences in taste and leaf color among tea plant cultivars with diverse leaf colors. Furthermore, 15 genes and 5 genes were identified as potential regulators controlling the expression of eight key structural genes, resulting in differences in the accumulation of specific compounds, including epicatechin (EC), catechin (C), cyanidin, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and quercetin 3-O-glucoside, in tea plant cultivars with diverse leaf colors. These findings provide insights into the development and utilization of resources from tea plants with diverse leaf colors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859652PMC
http://dx.doi.org/10.3390/plants14040625DOI Listing

Publication Analysis

Top Keywords

leaf colors
20
tea plant
16
plant cultivars
16
diverse leaf
16
tea plants
12
cultivars diverse
12
flavonoid glycosides
8
tea
7
leaf
6
cultivars
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!