Microbial inoculation plays a crucial role in shaping plant physiological and biochemical responses, influencing growth, secondary metabolism, and stress-related markers. This study investigates the effects of PAH-degrading microorganisms (, , and ) on the growth, secondary metabolism, photosynthetic pigment, and stress-related biochemical markers of silver birch ( Roth) seedlings from two half-sib families grown hydroponically. Results demonstrate family-dependent variations in the response to microbial treatments. In family 73, the growth of both shoots and roots was inhibited by certain microbial treatments, along with a decrease in key biochemical markers such as phenolic content and carotenoids. Conversely, family 86 showed no growth inhibition and exhibited improvements in some biochemical markers, including flavonoids and chlorophyll. Stress indicators, such as malondialdehyde (MDA) and soluble sugars, displayed contrasting patterns between families, with increased MDA observed in family 73 under certain microbial treatments. In contrast, family 86 did not exhibit an increase in MDA, suggesting differences in stress mitigation. Soluble sugars were generally reduced in family 73. Antioxidant enzyme activity further highlighted these family-specific responses, with variations in enzymes like ascorbate peroxidase (APX) and guaiacol peroxidase (POX) across treatments. Notably, significant interactions between family and microbial treatments were observed for several oxidative stress enzymes, underscoring the role of genotype in shaping the response to microbial stress. These findings highlight the genotype-dependent interactions between microbial inoculation and plant secondary metabolism, providing insights into the role of specifically selected microbial inoculation in stress mitigation and growth regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859868PMC
http://dx.doi.org/10.3390/plants14040545DOI Listing

Publication Analysis

Top Keywords

microbial treatments
16
microbial inoculation
12
secondary metabolism
12
biochemical markers
12
microbial
9
silver birch
8
growth secondary
8
response microbial
8
family growth
8
soluble sugars
8

Similar Publications

Synergistic antibacterial effects of pinaverium bromide and oxacillin against .

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: () adheres to the surface of medical devices, forming highly drug-resistant biofilms, which has made the development of novel antibacterial agents against and its biofilms a key research focus. By drug repurposing, this study aims to explore the combinational antimicrobial effects between pinaverium bromide (PVB), a -type calcium channel blocker, and oxacillin (OXA) against .

Methods: Clinical isolates of were collected from January to September 2022 at the Department of Clinical Laboratory of the Third Xiangya Hospital, Central South University.

View Article and Find Full Text PDF

Characterization of Klebsiella pneumoniae Carbapenemase (KPC)-14, a KPC Variant Conferring Resistance to Ceftazidime-Avibactam in the Extensively Drug-resistant ST463 Pseudomonas aeruginosa Clinical Isolate.

J Glob Antimicrob Resist

March 2025

Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:

Objectives: We studied two Klebsiella pneumoniae carbapenemase (KPC)-14 variants from clinical Pseudomonas aeruginosa isolates (C137 and C159) to better understand the genomic diversity, mechanisms, and genes that confer antibiotic resistance and pathogenicity.

Methods: Genomic DNA from C137/159 was subjected to Illumina and Oxford Nanopore sequencing. Horizontal transmission of the plasmid was evaluated using cloning experiments.

View Article and Find Full Text PDF

The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease.

View Article and Find Full Text PDF

There is increasing awareness of the presence of anticancer drugs (ACDs) in wastewater. Nonetheless, how ACDs affect the performance of wastewater treatment systems and their microbial populations remains largely unclear. This study investigated the effects of three common ACDs (cyclophosphamide, tamoxifen, and methotrexate) at varying concentrations on physicochemical parameters and drug removal efficiency in an aerobic granular sludge (AGS) system operated in a continuous-flow reactor.

View Article and Find Full Text PDF

Dietary Saccharomyces cerevisiae fermentation product improved egg quality by modulating intestinal health, ovarian function, and cecal microbiota in post-peak laying hens.

Poult Sci

March 2025

Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China. Electronic address:

Saccharomyces cerevisiae fermentation product (SCFP), a postbiotic feed additive, has potential to improve animal growth and productivity. However, its effects on post-peak laying hens have not been thoroughly investigated. Therefore, this study aimed to explore the effects of SCFP on production, egg quality, intestinal health, ovarian function, and cecal microbiota in post-peak laying hens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!