A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploratory Study on Nanoparticle Co-Delivery of Temozolomide and Ligustilide for Enhanced Brain Tumor Therapy. | LitMetric

Exploratory Study on Nanoparticle Co-Delivery of Temozolomide and Ligustilide for Enhanced Brain Tumor Therapy.

Pharmaceutics

Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.

Published: February 2025

Temozolomide (TMZ) is the first-line therapy for glioblastoma (GBM), but its clinical efficacy is limited by its short half-life, poor brain targeting, adverse side effects, and the development of drug resistance. Ligustilide (LIG) has been shown to enhance blood-brain barrier permeability and reduce P-glycoprotein activity, thereby potentiating the synergistic effect of TMZ against GBM. The dual-drug-loaded nanoparticles encapsulating both TMZ and LIG (TMZ/LIG-NPs) were prepared using Poly (d,l-lactic-co-glycolide)-monomethoxy poly (ethylene glycol) (PLGA-mPEG). The physicochemical properties of the NPs, including particle size and zeta potential, were characterized. Cellular uptake of NPs was evaluated using flow cytometry and fluorescence staining. The pharmacokinetic profile and cytotoxicity of TMZ/LIG-NPs were compared to those of free TMZ and a mixture of TMZ and LIG in rat and glioma cells, respectively. The mean particle size of TMZ/LIG-NPs was 117.6 ± 0.7 nm, with a zeta potential of -26.5 ± 0.4 mV. Cellular uptake of NPs was significantly higher than that of free drug in U251 cells. Encapsulation of TMZ in NPs significantly increased its half-life by 1.62-fold compared to free TMZ and significantly improved its pharmacokinetic profile. Moreover, the storage stability of the TMZ/LIG-NPs solution was extended to one month. The toxicity of TMZ/LIG-NPs to glioma cells C6 and U251 was markedly enhanced compared to the mixture of TMZ and LIG. The development of TMZ/LIG-NPs using PLGA-mPEG effectively enhanced the stability and efficacy of both TMZ and LIG. This dual drug-loaded nanoparticle system represents a promising strategy for glioblastoma therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858958PMC
http://dx.doi.org/10.3390/pharmaceutics17020191DOI Listing

Publication Analysis

Top Keywords

tmz lig
16
tmz
9
particle size
8
zeta potential
8
cellular uptake
8
uptake nps
8
pharmacokinetic profile
8
compared free
8
free tmz
8
mixture tmz
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!