This study evaluates the combined use of mobile transects and fixed stations to analyze atmospheric urban heat islands (UHIs'a) in Temuco, Chile. Data were collected using 23 fixed stations and 3 mobile transects traversing predefined city routes, capturing temperature records at one-minute intervals. Results revealed moderate correlations between methodologies (coefficients: 0.55-0.62) and average temperature differences of 0.72 °C to 1.6 °C, confirming their compatibility for integrated use. UHI intensities ranged from weak (0.5 °C) to extremely strong (13 °C), with the highest urban temperature (33.1 °C) observed in Zone Z-3, contrasting with 25.4 °C at the rural Maquehue station. Simulations and isothermal maps identified four UHI zones, highlighting the influence of impervious surfaces, traffic density, and limited vegetation on temperature distribution. Fluctuation plots revealed rapid cooling in vegetated areas and high heat retention in dense urban zones. These findings validate the methodologies for spatial and temporal UHI analysis and provide actionable insights for urban planning. Targeted interventions, such as increasing vegetation in high-risk zones, are recommended to mitigate extreme heat and enhance thermal comfort in urban areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860384 | PMC |
http://dx.doi.org/10.3390/s25041251 | DOI Listing |
Vegetation restoration plays a critical role in mitigating urban heat island (UHI) effects and improving local climate conditions, particularly in mining-affected areas. This study analyzes vegetation cover changes and their impact on UHI from 2000 to 2020 in three locations: Dexing City and Qibaoshan Township in China, and Dartford Ebbsfleet Garden City in the UK, using satellite imagery and remote sensing data. In Dexing City, the transition from open-pit to underground mining, combined with reclamation efforts, maintained a stable fractional vegetation cover (FVC) of 0.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
Urban greenspace (UGS) is a crucial nature-based solution for mitigating increasing human exposure to extreme heat, but its long-term potential has been poorly quantified. We used high spatial-temporal resolution data sets of urban land cover and population grid in combination with an urban climate model, machine learning, and land use simulation model to assess the impact of UGS on population exposure to extreme (high-heat exposure, HHE) and its potential spatial optimization strategies. Results showed that the UGS and HHE have a strong spatiotemporal dynamic coupling in 21st century Chinese cities.
View Article and Find Full Text PDFJ Urban Health
March 2025
Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
Growing evidence suggests exposure to high temperatures may result in increased urban crime, a known driver of health and health inequity. Theoretical explanations have been developed to describe the heat-crime relationship without consensus yet achieved among experts. This scoping review aims to summarize evidence of heat-crime associations in U.
View Article and Find Full Text PDFFront Urban Rural Plan
March 2025
Research & Implementation, Texas A&M Transportation Institute, Dallas, TX 75251 USA.
This paper explores the evolution of Geodesign in addressing spatial and environmental challenges from its early foundations to the recent integration of artificial intelligence (AI). AI enhances existing Geodesign methods by automating spatial data analysis, improving land use classification, refining heat island effect assessment, optimizing energy use, facilitating green infrastructure planning, and generating design scenarios. Despite the transformative potential of AI in Geodesign, challenges related to data quality, model interpretability, and ethical concerns such as privacy and bias persist.
View Article and Find Full Text PDFEnviron Pollut
March 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China. Electronic address:
Advancing the synergistic governance of urban heat island (UHI), energy consumption (EC), CO emissions and air pollution (collectively referred to as heat-energy-carbon-pollution, HECP) is essential for China's green transition. This study examined five representative indicators of HECP-namely, urban heat island intensity (UHII), EC, CO emissions, PM and O concentrations-using panel data from 269 prefecture-level cities in China from 2005 to 2020. The Spatial Durbin Model (SDM) was employed to identify the key drivers of HECP governance at both national and regional levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!