A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robotic Fast Patch Clamp in Brain Slices Based on Stepwise Micropipette Navigation and Gigaseal Formation Control. | LitMetric

Robotic Fast Patch Clamp in Brain Slices Based on Stepwise Micropipette Navigation and Gigaseal Formation Control.

Sensors (Basel)

Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China.

Published: February 2025

The patch clamp technique has become the gold standard for neuron electrophysiology research in brain science. Brain slices have been widely utilized as the targets of the patch clamp technique due to their higher optical transparency compared to a live brain and their intercellular connectivity in comparison to cultured single neurons. However, the narrow working space, small scope, and depth of the field of view make the positioning of the operation's micropipette to the target neuron a time-consuming task reliant on a high level of experience, significantly slowing down operation of the patch clamp technique in brain slices. Further, the current poor controllability in gigaseal formation, which is the key to electrophysiology signal recording, significantly lowers the patch clamp success rate. In this paper, a stepwise navigation of the micropipette is conducted to accelerate the positioning process of the micropipette tip to the target neuron in the brain slice. Then, a fuzzy proportional-integral-derivative controller is designed to control the gigaseal formation process along a designed resistance curve. The experimental results demonstrate an almost doubled patch clamp technique speed, with a 25% improvement in the success rate compared to the conventional manual method. The above advantages may promote the application of our method in brain science research based on brain slice platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859202PMC
http://dx.doi.org/10.3390/s25041128DOI Listing

Publication Analysis

Top Keywords

patch clamp
24
clamp technique
16
brain slices
12
gigaseal formation
12
brain
8
brain science
8
micropipette target
8
target neuron
8
success rate
8
brain slice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!