Reactive oxygen species (ROS) play an important role in atmospheric pollution, and their detection is essential for assessing air quality and health risks. This study developed and validated a standardized methodology for using the BPEAnit probe in a specially designed particle-into-liquid sampler, the Particle Into Nitroxide Quencher (PINQ), to measure reactive oxygen species in atmospheric monitoring applications. The method demonstrated high sensitivity, with a detection limit of 0.03 nmol·m, robust linearity (R = 0.9999), and negligible system residue, ensuring accurate ROS quantification. Comparative analyses of startup conditions revealed superior baseline stability under cold start conditions despite the longer stabilization time required. The auto-oxidation of the BPEAnit probe, measured at a rate of 3.01 nmol·m per hour, was identified as a critical factor for long-term monitoring, highlighting the necessity of standardized procedures to mitigate the drift effect. The study established the system's suitability for urban air quality assessments and public health risk evaluations, offering insights into its limitations and operational challenges. Future advancements could focus on enhancing probe stability and expanding the method's utility in diverse operational environments, thereby broadening its applicability to diverse monitoring scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859408 | PMC |
http://dx.doi.org/10.3390/s25041129 | DOI Listing |
Sensors (Basel)
February 2025
College of Environment and Climate, Jinan University, Guangzhou 511443, China.
Reactive oxygen species (ROS) play an important role in atmospheric pollution, and their detection is essential for assessing air quality and health risks. This study developed and validated a standardized methodology for using the BPEAnit probe in a specially designed particle-into-liquid sampler, the Particle Into Nitroxide Quencher (PINQ), to measure reactive oxygen species in atmospheric monitoring applications. The method demonstrated high sensitivity, with a detection limit of 0.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2019
ILAQH (International Laboratory of Air Quality and Health), Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia.
To estimate the oxidative potential (OP) of particulate matter (PM), two commonly used cell-free, molecular probes were applied: dithiothreitol (DTT) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), and their performance was compared with 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit). To the best of our knowledge, this is the first study in which the performance of the DTT and DCFH has been compared with the BPEAnit probe. The average concentrations of PM, organic carbon (OC) and elemental carbon (EC) for fine (PM) and coarse (PM) particles were determined.
View Article and Find Full Text PDFSensors (Basel)
October 2019
ILAQH (International Laboratory of Air Quality and Health), Queensland University of Technology (QUT), George St. 2, Brisbane 4000 QLD, Australia.
This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor (HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated with a minimum time resolution of 2.
View Article and Find Full Text PDFEnviron Sci Technol
July 2013
International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4001, Australia.
Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of the fuel's constituent molecules. Previous studies demonstrated the relationship between the organic fraction of particulate matter (PM) and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analyzed in more detail to explore the role that different organic fractions play in the measured oxidative potential.
View Article and Find Full Text PDFEnviron Sci Technol
September 2010
International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia.
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!